Graphs and Combinatorics

, Volume 27, Issue 1, pp 27–46 | Cite as

The Cycle Discrepancy of Three-Regular Graphs

  • Sarmad AbbasiEmail author
  • Laeeq Aslam
Original Paper


Let G = (V, E) be an undirected graph and \({{\mathcal C}(G)}\) denote the set of all cycles in G. We introduce a graph invariant cycle discrepancy, which we define as
$${\rm cycdisc}(G) = \min_{\chi: V \mapsto \{+1, -1\}} \max_{ C \in {\mathcal C} (G)} \left|\sum_{v \in C} \chi(v)\right|.$$
We show that, if G is a three-regular graph with n vertices, then
$${\rm cycdisc}(G) \leq \frac{n +2}{6}.$$
This bound is best possible and is achieved by very simple graphs. Our proof is algorithmic and allows us to compute in O(n 2) time a labeling χ, such that
$$\max_{ C \in \mathcal{C}(G)} \left| \sum_{v \in C} \chi(v) \right| \leq \frac{n + 2}{6}.$$
Some interesting open problems regarding cycle discrepancy are also suggested.


Graph coloring Discrepancy Cycle discrepancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck J., Chen W.L.: Irregularities of Distribution. Cambridge University Press, New York (1987)zbMATHCrossRefGoogle Scholar
  2. 2.
    Beck J., Fiala W.: Integer making theorems. Discrete Appl. Math. 3, 1–8 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bollobás B.: Modern Graph Theory. Springer-Verlag, Berlin (1998)zbMATHGoogle Scholar
  4. 4.
    Brooks R.L.: On coloring the nodes of a network. Proc. Cambr. Philos. Soc. 37, 194–197 (1941)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chazelle B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  6. 6.
    Kranakis E., Krizanc D., Ruf B., Urrutia J., Woeginger G.: The vc-dimension of set systems defined by graphs. Discrete Appl. Math. 77(3), 237–257 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Matousek J.: Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics. Springer, Berlin (1999)Google Scholar
  8. 8.
    Schaefer M.: Deciding the Vapnik-Chervonenkis dimension is \({\Sigma_p^3}\)-complete. J. Comput. Syst. Sci. 58(1), 177–182 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Spencer J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.LahorePakistan
  2. 2.Punjab University College of Information Technology, University of the PunjabLahorePakistan

Personalised recommendations