Graphs and Combinatorics

, Volume 26, Issue 2, pp 147–162 | Cite as

Delsarte Set Graphs with Small c 2

  • S. Bang
  • A. Hiraki
  • J. H. Koolen
Original Paper


Let Γ be a Delsarte set graph with an intersection number c 2 (i.e., a distance-regular graph with a set \({\mathcal{C}}\) of Delsarte cliques such that each edge lies in a positive constant number \({n_{\mathcal{C}}}\) of Delsarte cliques in \({\mathcal{C}}\)). We showed in Bang et al. (J Combin 28:501–506, 2007) that if ψ 1 > 1 then c 2 ≥ 2 ψ 1 where \({\psi_1:=|\Gamma_1(x)\cap C |}\) for \({x\in V(\Gamma)}\) and C a Delsarte clique satisfying d(x, C) = 1. In this paper, we classify Γ with the case c 2 = 2ψ 1 > 2. As a consequence of this result, we show that if c 2 ≤ 5 and ψ 1 > 1 then Γ is either a Johnson graph or a folded Johnson graph \({\overline{J}(4s,2s)}\) with s ≥ 3.


Delsarte clique Delsarte set graph Distance-regular graph Johnson graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bang S., Hiraki A., Koolen J.H.: Delsarte clique graphs. Eur. J. Combin. 28, 501–516 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brouwer A.E., Cohen A.M., Neumaier A.: Distance-regular Graphs. Springer, Berlin (1989)zbMATHGoogle Scholar
  3. 3.
    Godsil C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)zbMATHGoogle Scholar
  4. 4.
    van Lint J.H., Wilson R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Department of MathematicsPusan National UniversityPusanRepublic of Korea
  2. 2.Division of Mathematical SciencesOsaka Kyoiku UniversityKashiwaraJapan
  3. 3.Department of Mathematics, Pohang Mathematics InstitutePOSTECHNamgu, PohangRepublic of Korea

Personalised recommendations