Skip to main content
Log in

Visualization of the occurrence and spread of wildfires in three-dimensional natural scenes

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

There are generally two ways to ignite wildfires, including natural fire sources represented by lightning strikes and artificial fire sources generated by human production and daily use, both of which have regional and seasonal characteristics. For three-dimensional forest fire research, it is not easy to achieve complex global spread behavior simulation while considering the internal physical reactions of vegetation combustion. The study constructed different natural scenes based on different vegetation cells, described the principle of lightning ignition of combustibles, analyzed the spread results of wildfires under the influence of multiple weather factors in different scenes, and achieved repeatable wildfire research. At the same time, the virtual scene intuitively expresses the real fire extinguishing methods, providing relevant references for the design of fire extinguishing schemes. Compared to directly using physical models, this article uses a single wood pyrolysis model to couple vegetation’s morphological structure and physical reactions. By considering the spread of different vegetation types and the influence of multiple factors on forest fire spread, it expresses the complete forest fire behavior from ignition to extinction, significantly improving the realism and immersion of forest fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Due to the fact that the project is still in the development stage, the code for copying the results of this study is temporarily unavailable.

References

  1. Meng, Q., Huai, Y., You, J., Nie, X.: Visualization of 3d forest fire spread based on the coupling of multiple weather factors. Comput. Graph. 110, 58–68 (2023). https://doi.org/10.1016/j.cag.2022.12.002

    Article  Google Scholar 

  2. Shu, Y., Sun, Z., Zhang, H.: Research on lightning fire in forest: current status and outlook. World For. Res. 35, 34–40 (2022). https://doi.org/10.13348/j.cnki.sjlyyj.2021.0070.y

    Article  Google Scholar 

  3. Rui, X., Hui, S., Yu, X., Zhang, G., Wu, B.: Forest fire spread simulation algorithm based on cellular automata. Nat. Hazards 91, 309–319 (2018). https://doi.org/10.1007/s11069-017-3127-5

    Article  Google Scholar 

  4. Sun, L., Xu, C., He, Y., Zhao, Y., Xu, Y., Rui, X., Xu, H.: Adaptive forest fire spread simulation algorithm based on cellular automata. Forests 12(11), 1431 (2021). https://doi.org/10.3390/f12111431

    Article  Google Scholar 

  5. Pirk, S., Jarząbek, M., Hädrich, T., Michels, D.L., Palubicki, W.: Interactive wood combustion for botanical tree models. ACM Trans. Graph. (2017). https://doi.org/10.1145/3130800.3130814

    Article  Google Scholar 

  6. Hädrich, T., Banuti, D.T., Pałubicki, W., Pirk, S., Michels, D.L.: Fire in paradise: Mesoscale simulation of wildfires. ACM Trans. Graph. (2021). https://doi.org/10.1145/3450626.3459954

  7. Salis, M., Arca, B., Del Giudice, L., Palaiologou, P., Alcasena-Urdiroz, F., Ager, A., Fiori, M., Pellizzaro, G., Scarpa, C., Schirru, M., et al.: Application of simulation modeling for wildfire exposure and transmission assessment in Sardinia, Italy. Int. J. Disaster Risk Reduct. 58, 102189 (2021). https://doi.org/10.1016/j.ijdrr.2021.102189

    Article  Google Scholar 

  8. Li, Y., Wu, G., Zhang, S., Li, M., Nie, B., Chen, Z.: A novel method of modeling grassland wildfire dynamics based on cellular automata: a case study in inner Mongolia, China. ISPRS Int. J. Geo Inf. 12(12), 474 (2023). https://doi.org/10.3390/ijgi12120474

    Article  Google Scholar 

  9. Cheng, L., Xuesheng, J.: Design of interactive simulated water gun fire fighting training system based on steam vr. J. Syst. Simul. 34(6), 1312 (2022). https://doi.org/10.16182/j.issn1004731x.joss.21-0093

    Article  Google Scholar 

  10. Ausonio, E., Bagnerini, P., Ghio, M.: Drone swarms in fire suppression activities: a conceptual framework. Drones 5(1), 17 (2021). https://doi.org/10.3390/drones5010017

    Article  Google Scholar 

  11. Han, Y., Liu, H., Tian, Y., Chen, Z., Nie, Z.: Virtual reality oriented modeling and simulation of water-dropping from helicopter. In: AIVR 2018, pp. 24–29. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3293663.3293669

  12. Cheney, N., Gould, J., Catchpole, W.R.: Prediction of fire spread in grasslands. Int. J. Wildland Fire 8(1), 1–13 (1998). https://doi.org/10.1071/WF9980001

    Article  Google Scholar 

  13. Liu, X.-P., Tong, Z.-J., Zhang, J.-Q., Song, C.-T.: Uncertainty simulation of large-scale discrete grassland fire spread based on Monte Carlo. Fire Saf. J. 135, 103713 (2023). https://doi.org/10.1016/j.firesaf.2022.103713

    Article  Google Scholar 

  14. Moinuddin, K., Sutherland, D., Mell, W.: Simulation study of grass fire using a physics-based model: striving towards numerical rigour and the effect of grass height on the rate of spread. Int. J. Wildland Fire 27(12), 800–814 (2018). https://doi.org/10.1071/WF17126

    Article  Google Scholar 

  15. Morvan, D., Meradji, S., Mell, W.: Interaction between head fire and backfire in grasslands. Fire Saf. J. 58, 195–203 (2013). https://doi.org/10.1016/j.firesaf.2013.01.027

    Article  Google Scholar 

  16. Li, J., Li, X., Chen, C., Zheng, H., Liu, N.: Three-dimensional dynamic simulation system for forest surface fire spreading prediction. Int. J. Pattern Recogn. Artif. Intell. 32(08), 1850026 (2018). https://doi.org/10.1142/S021800141850026X

    Article  Google Scholar 

  17. Hoffman, C.M., Canfield, J., Linn, R.R., Mell, W., Sieg, C.H., Pimont, F., Ziegler, J.: Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 52, 221–237 (2016). https://doi.org/10.1007/s10694-015-0500-3

    Article  Google Scholar 

  18. Liu, Y., Liu, H., Zhou, Y., Sun, C.: Spread vector induced cellular automata model for real-time crown fire behavior simulation. Environ. Model. Softw. 108, 14–39 (2018). https://doi.org/10.1016/j.envsoft.2018.07.005

    Article  Google Scholar 

  19. Scott, J.H.: Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior, vol. 29. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station (2001)

  20. Moinuddin, K., Sutherland, D.: Modelling of tree fires and fires transitioning from the forest floor to the canopy with a physics-based model. Math. Comput. Simul. 175, 81–95 (2020). https://doi.org/10.1016/j.matcom.2019.05.018

    Article  MathSciNet  Google Scholar 

  21. Simpson, K.J., Archibald, S., Osborne, C.P.: Savanna fire regimes depend on grass trait diversity. Trends Ecol. Evolut. (2022). https://doi.org/10.1016/j.tree.2022.04.010

    Article  Google Scholar 

  22. Meng, Q., Lu, H., Huai, Y., Xu, H., Yang, S.: Forest fire spread simulation and fire extinguishing visualization research. Forests 14(7), 1371 (2023). https://doi.org/10.3390/f14071371

    Article  Google Scholar 

  23. Morvan, D., Méradji, S., Accary, G.: Physical modelling of fire spread in grasslands. Fire Saf. J. 44(1), 50–61 (2009). https://doi.org/10.1016/j.firesaf.2008.03.004

    Article  Google Scholar 

  24. Cruz, M.G., Alexander, M.E., Wakimoto, R.H.: Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Can. J. For. Res. 35(7), 1626–1639 (2005). https://doi.org/10.1139/x05-085

    Article  Google Scholar 

  25. Xuehua, W., Chang, L., Jiaqi, L., Xuezhi, Q., Ning, W., Wenjun, Z.: A cellular automata model for forest fire spreading simulation. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6 (2016). IEEE. https://doi.org/10.1109/SSCI.2016.7849971

  26. Han, X., Xu, H., Wang, T., Yin, S., Gao, B., Wang, Y., Shan, Y.: The effects of humus moisture content on underground fires in a Larix Gmelinii plantation. J. For. Res. (2021). https://doi.org/10.1007/s11676-021-01377-x

    Article  Google Scholar 

  27. Miller, C., Urban, D.L.: Connectivity of forest fuels and surface fire regimes. Landsc. Ecol. 15, 145–154 (2000). https://doi.org/10.1023/A:1008181313360

    Article  Google Scholar 

  28. Awad, C., Frangieh, N., Marcelli, T., Accary, G., Morvan, D., Meradji, S., Chatelon, F.J., Rossi, J.L.: Numerical study of the moisture content threshold under prescribed burning conditions. Fire Saf. J. 122, 103324 (2021). https://doi.org/10.1016/j.firesaf.2021.103324

    Article  Google Scholar 

  29. Moinuddin, K., Khan, N., Sutherland, D.: Numerical study on effect of relative humidity (and fuel moisture) on modes of grassfire propagation. Fire Saf. J. 125, 103422 (2021). https://doi.org/10.1016/j.firesaf.2021.103422

    Article  Google Scholar 

  30. Lopes, A., Ribeiro, L., Viegas, D., Raposo, J.: Simulation of forest fire spread using a two-way coupling algorithm and its application to a real wildfire. J. Wind Eng. Ind. Aerodyn. 193, 103967 (2019). https://doi.org/10.1016/j.jweia.2019.103967

    Article  Google Scholar 

  31. Huai, Y., Meng, Q., Ma, T., Xu, H., Zhao, X., Cheng, M., Huang, X.: A review of forest visualization and forest fire simulation technology research. J. Image Graph. (2023). https://doi.org/10.11834/jig.230016

  32. Sun, T., Zhang, L., Chen, W., Tang, X., Qin, Q.: Mountains forest fire spread simulator based on geo-cellular automaton combined with Wang Zhengfei velocity model. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(4), 1971–1987 (2012). https://doi.org/10.1109/JSTARS.2012.2231956

    Article  Google Scholar 

  33. Zheng, Z., Huang, W., Li, S., Zeng, Y.: Forest fire spread simulating model using cellular automaton with extreme learning machine. Ecol. Model. 348, 33–43 (2017). https://doi.org/10.1016/j.ecolmodel.2016.12.022

    Article  Google Scholar 

  34. Mutthulakshmi, K., Wee, M.R.E., Wong, Y.C.K., Lai, J.W., Koh, J.M., Acharya, U.R., Cheong, K.H.: Simulating forest fire spread and fire-fighting using cellular automata. Chin. J. Phys. 65, 642–650 (2020). https://doi.org/10.1016/j.cjph.2020.04.001

    Article  MathSciNet  Google Scholar 

  35. Jellouli, O., Bernoussi, A., Mâatouk, M., Amharref, M.: Forest fire modelling using cellular automata: application to the watershed Oued Laou (Morocco). Math. Comput. Model. Dyn. Syst. 22(5), 493–507 (2016). https://doi.org/10.1080/13873954.2016.1204321

    Article  MathSciNet  Google Scholar 

  36. Bai, Y.: Study on compound suppression technique and emergency safety measure in forest fire fighting. Ph.D thesis, Beijing Forestry University, Beijing (2008)

  37. Bartenev, I.M., Malyukov, S.V., Gnusov, M.A., Stupnikov, D.S., Platonov, A.D.: Modern designs of forest fires machines for soil extinguishment of fire. In: Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” (ISEES 2018), pp. 48–53. Atlantis Press (2018/12). https://doi.org/10.2991/isees-18.2018.10

  38. Penney, G., Habibi, D., Cattani, M., Carter, M.: Calculation of critical water flow rates for wildfire suppression. Fire 2(1), 3 (2019). https://doi.org/10.3390/fire2010003

    Article  Google Scholar 

  39. Aydin, B., Selvi, E., Tao, J., Starek, M.J.: Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting. Drones 3(1), 17 (2019). https://doi.org/10.3390/drones3010017

    Article  Google Scholar 

  40. Prakasha, P.S., Nagel, B., Kilkis, S., Naeem, N., Ratei, P.: System of systems simulation driven wildfire fighting aircraft design. In: AIAA Aviation 2021 Forum, p. 2455 (2021). https://doi.org/10.2514/6.2021-2455

  41. Zhang, H., Qiao, Y., Tang, L., Chen, H., Liu, N., Zhang, L.: Experimental study on sustainable flaming ignition of dead pine needles by simulated lightning discharge. J. Eng. Thermophys. 43, 840–845 (2022)

    Google Scholar 

  42. Wu, Z., Wang, B., Li, M., Tian, Y., Quan, Y., Liu, J.: Simulation of forest fire spread based on artificial intelligence. Ecol. Ind. 136, 108653 (2022). https://doi.org/10.1016/j.ecolind.2022.108653

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31770589). We received their strong support during the paper revision process and sincerely thank the reviewing experts for their reasonable opinions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Huai.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of the manuscript entitled “Visualization of the occurrence and spread of wildfires in three-dimensional natural scenes.”

Authors’ contributions

Qingkuo Meng contributed to conceptualization; data duration; methodology; validation; visualization; and writing—original draft, and provided software. Yongjian Huai was involved in conceptualization; resources; supervision; and writing—review and editing. Fei Ma provided software and contributed to visualization. Wentao Ye provided software and was involved in data duration. Haifeng Xu contributed to methodology and visualization. Siyu Yang provided software and was involved in validation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Huai, Y., Ma, F. et al. Visualization of the occurrence and spread of wildfires in three-dimensional natural scenes. Vis Comput (2024). https://doi.org/10.1007/s00371-024-03408-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-024-03408-0

Keywords

Navigation