Skip to main content
Log in

Improved biharmonic kernel signature for 3D non-rigid shape matching and retrieval

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Object retrieval, in particular 3D shape retrieval, recently has many applications such as molecular biology, medical research and computer-aided manufacturing. As the internet and 3D modeling tools have led to an increasingly growth in the number of available 3D models, it becomes necessary to have a proper and efficient representation method to capture the most important information about shapes, which for searching target object more efficiently and accurately. In this paper, we propose a novel 3D shape descriptor, improved biharmonic kernel signature (IBKS). Firstly, based on the Laplace–Beltrami operator, we perform a linear combination of some scaled eigenvalues and eigenfunctions of the biharmonic kernel signature (BKS) to construct invariant metrics about the shape. Secondly, we note that the Gaussian curvature of the vertices remains stable as the shape undergoes pose changes. This is a local property of surface that is isometric invariant and stable at most points under object articulation but is not well coded in the BKS descriptor. Therefore, we use curvature aggregation method to reduce the influence of noise, which enhances the feature separation and makes the descriptor more discriminative. The IBKS descriptor built upon the concept of biharmonic kernel signature, the descriptor inherits several useful properties such as stability of the shape joint region, robustness to isometric, scaling, noise, sampling and topology transformations. Due to the stability and discriminative power of IBKS, we can simply and effectively characterize, identify and analyze non-rigid 3D shapes. We show how our framework can be applied for shape representation, matching and retrieval. To assert our method more stable to non-rigid deformations, we compare our framework with advanced non-rigid signatures on traditional benchmark McGill and SHREC2015 datasets. Experimental results show that our spectrum shape descriptor is more stable and discriminative and is significantly better than other descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability statements

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. (TOG) 25(1), 130–150 (2006)

    Article  Google Scholar 

  2. Smeets, D., Hermans, J., Vandermeulen, D., Suetens, P.: Isometric deformation invariant 3D shape recognition. Pattern Recogn. 45(7), 2817–2831 (2012)

    Article  ADS  Google Scholar 

  3. Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Comput. Graph. Forum 30(5), 1461–1470 (2011)

    Article  Google Scholar 

  4. Zhang, D., Wu, Z., Wang, X., Lv, C., Liu, N.: 3D skull and face similarity measurements based on a harmonic wave kernel signature. Vis. Comput. 37, 749–764 (2021)

    Article  Google Scholar 

  5. Pickup, D., Sun, X., Rosin, P.L., Martin, R., Cheng, Z., Lian, Z., Aono, M., Hamza, A., Bronstein, A., Bronstein, M.: Shape retrieval of non-rigid 3D human models. Int. J. Comput. Vis. 120, 169–193 (2016)

    Article  MathSciNet  Google Scholar 

  6. Choukroun, Y., Shtern, A., Bronstein, A., Kimmel, R.: Hamiltonian operator for spectral shape analysis. Proc. IEEE Trans. Vis. Comput. Graph. 26(2), 1320–1331 (2020)

    Article  Google Scholar 

  7. Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., Zucker, S.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA. 102(21), 7426–7431 (2005)

  8. Rustamov, R.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233 (2007)

  9. Ovsjanikov, M., Bronstein, A., Bronstein, M., Guibas, L.: Shape Google: a computer vision approach to isometry invariant shape retrieval. In: Proceedings of the International Conference on Computer Vision Workshops (ICCVW’09), pp. 320–327 (2009)

  10. Bronstein, A., Bronstein, M., Guibas, L., Ovsjanikov, M.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. (TOG) 30(1), 1–20 (2011)

    Article  Google Scholar 

  11. Fang, Y., Xie, J., Dai, G., Meng, W., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2319–2328 (2015)

  12. Rostami, R., Bashiri, F., Rostami, B., Yu, Z.: A survey on data-driven 3D shape descriptors. Comput. Graph. Forum 38, 356–393 (2018)

    Article  Google Scholar 

  13. Sahillioğlu, Y.: Recent advances in shape correspondence. Vis. Comput. 36(8), 1705–1721 (2020)

    Article  Google Scholar 

  14. Biasotti, S., Cerri, A., Bronstein, A., Bronstein, M.: Recent trends, applications, and perspectives in 3d shape similarity assessment. Comput. Graph. Forum 35(6), 87–119 (2016)

    Article  Google Scholar 

  15. Raviv, D., Bronstein, M., Bronstein, A., Kimmel, R., Sochen, N.: Affine-invariant diffusion geometry for the analysis of deformable 3d shapes. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 2361–2367 (2011)

  16. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25, 667–675 (2009)

    Article  Google Scholar 

  17. Melzi, S., Rodolà, E., Castellani, U., Bronstein, M.: Localized manifold harmonics for spectral shape analysis. Comput. Graph. Forum 37(6), 20–34 (2017)

    Article  Google Scholar 

  18. Zhang, H., Liu, R.: Mesh segmentation via recursive and visually salient spectral cuts. In: Proceedings of the Vision Modeling and Visualization, pp. 429–436 (2005)

  19. Carcassoni, M., Hancock, E.: Spectral correspondence for point pattern matching. Pattern Recogn. 36(1), 193–204 (2003)

    Article  ADS  Google Scholar 

  20. Jain, V., Hao, Z.: Robust 3D shape correspondence in the spectral domain. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, pp. 19–31 (2006)

  21. Berard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4(4), 373–398 (1994)

    Article  MathSciNet  Google Scholar 

  22. Reuter, M., Wolter, F., Peinecke, N.: Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  23. Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. Comput. Graph. Forum 27, 1341–1348 (2008)

    Article  Google Scholar 

  24. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287–308 (2010)

    Article  Google Scholar 

  25. Chaudhari, A., Leahy, R., Wise, B., Lane, N., Badawi, R., Joshi, A.: Global point signature for shape analysis of carpal bones. Phys. Med. Biol. 59(4), 961 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009)

    Article  Google Scholar 

  27. Kokkinos, I., Bronstein, M., Litma, R., Bronstein, A.: Intrinsic shape context descriptors for deformable shapes. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 159–166 (2012)

  28. Bronstein, M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 1704–1711 (2010)

  29. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCV), pp. 1626–1633 (2011)

  30. Rustamov, R.: Multiscale biharmonic kernels. Comput. Graph. Forum 30, 1521–1531 (2011)

    Article  Google Scholar 

  31. Jiangchao, W., Yimin, Z.: A biharmonic eigenvalue problem and its application. Acta Math. Sci. 32(3), 1213–1225 (2012)

    Article  MathSciNet  Google Scholar 

  32. Li, C., BenHamza, A.: A multiresolution descriptor for deformable 3d shape retrieval. Vis. Comput. 29, 513–524 (2013)

    Article  Google Scholar 

  33. Limberger, F., Wilson, R.: Feature encoding of spectral signatures for 3D non-rigid shape retrieval. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 56.1–56.13 (2015)

  34. Ye, J., Yu, Y.: A fast modal space transform for robust nonrigid shape retrieval. Vis. Comput. 32, 553–568 (2016)

    Article  Google Scholar 

  35. Naffouti, S., Fougerolle, Y., Sakly, A., Mériaudeau, F.: An advanced global point signature for 3D shape recognition and retrieval. Signal Process. Image Commun. 58, 228–239 (2017)

    Article  Google Scholar 

  36. Li, H., Sun, L., Wu, X., Cai, Q.: Scale-invariant wave kernel signature for non-rigid 3D shape retrieval. In: Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 448–454 (2018)

  37. Du, G., Zhou, M., Yin, C., Wu, Z., Ren, P., Shui, W.: A novel HKS based feature extraction algorithm. In: Proceedings of the 2016 International Conference on Virtual Reality and Visualization (ICVRV), pp. 144–147 (2016)

  38. Zhang, D., Wu, Z., Wang, X., Lv, C., Zhou, M.: 3D non-rigid shape similarity measure based on Fréchet distance between spectral distance distribution curve. Multimed. Tools Appl. 80, 615–640 (2021)

    Article  Google Scholar 

  39. Magnet, R., Ovsjanikov, M.: DWKS: a local descriptor of deformations between meshes and point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV), pp. 3773–3782 (2021)

  40. Zhang, D., Liu, N., Yan, Y., Ma, X., Renqing, Z., Zhang, X., Ma, F.: Scaling invariant harmonic wave kernel signature for 3D point cloud similarity. In: Proceedings of the Image and Graphics, pp. 44–56 (2021)

  41. Cosmo, L., Minello, G., Bronstein, M., Rodolà, E., Rossi, L., Torsello, A.: 3D shape analysis through a quantum lens: the average mixing kernel signature. Int. J. Comput. Vis. 130(6), 1474–1493 (2022)

    Article  Google Scholar 

  42. Yan, Y., Zhou, M., Zhang, D., Geng, S.: Scale-invariant Mexican Hat wavelet descriptor for non-rigid shape similarity measurement. Sci. Rep. 13, 2518 (2023)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yan, Y., Zhou, M., Zhang, D., Geng, S.: Average increment scale-invariant heat kernel signature for 3D non-rigid shape analysis. Tools Appl. 83(3), 8077–8115 (2024)

  44. Lavoué, G.: Combination of bag-of-words descriptors for robust partial shape retrieval. Vis. Comput. 28(9), 931–942 (2012)

    Article  Google Scholar 

  45. Lian, Z., Godil, A., Sun, X., Xiao, J.: CM-BOF: visual similarity-based 3D shape retrieval using clock matching and bag-of-features. Mach. Vis. Appl. 24(8), 1685–1704 (2013)

    Article  Google Scholar 

  46. Li, C., Hamza, A.: Intrinsic spatial pyramid matching for deformable 3D shape retrieval. Int. J. Multimed. Inf. Retr. 2(4), 261–271 (2013)

    Article  Google Scholar 

  47. Li, C., Hamza, A.: Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey. Multimed. Syst. 20(3), 253–281 (2014)

    Article  Google Scholar 

  48. Wan L, Jiang J, Zhang H. Incomplete 3D shape retrieval via sparse dictionary learning. In: Pacific Graphics, pp. 25–30 (2015)

  49. Yang, J., Xu, H.: Metric learning based object recognition and retrieval. Neurocomputing 190, 70–81 (2016)

    Article  Google Scholar 

  50. Memon, S., Akthar, F., Mahmood, T., Azeem, M., Shaukat, Z.: 3D shape retrieval using bag of word approaches. In: Proceedings of the 2nd international conference on computing, mathematics and engineering technologies(iCoMET), pp. 1–7 (2019)

  51. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M., Cremers, D.: Anisotropic diffusion descriptors. Comput. Graph. Forum 35, 431–441 (2016)

    Article  Google Scholar 

  52. Litman, R., Bronstein, A.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2014)

    Article  PubMed  CAS  Google Scholar 

  53. Masci, J., Rodolà, E., Boscaini, D., Bronstein, M., Li, H., Geometric deep learning. In: SIGGRAPH ASIA: Courses, pp. 1–50. ACM (2016)

  54. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 5425–5434 (2017)

  55. Boscaini, D., Masci, J., Melzi, S., Bronstein, M., Castellani, U., Vandergheynst, P.: Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Comput. Graph. Forum 34(5), 13–23 (2015)

    Article  Google Scholar 

  56. Masci J, Boscaini D, Bronstein M, Vandergheynst P. Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the Computer Vision Workshop (ICCVW), pp. 832–840 (2015)

  57. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 3189–3197 (2016)

  58. Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MathSciNet  Google Scholar 

  59. Patane, G.: STAR-Laplacian spectral kernels and distances for geometry processing and shape analysis. Comput. Graph. Forum 35, 599–624 (2016)

    Article  Google Scholar 

  60. Choull, M., Kayser, L.: A remark on the Gaussian lower bound for the Neumann heat kernel of the Laplace–Beltrami operator. In: Semigroup Forum, pp. 71–79 (2017)

  61. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

  62. Christian, R.: Machine learning, a probabilistic perspective. Chance 27(2), 62–63 (2014)

    Article  Google Scholar 

  63. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2161–2168 (2006)

  64. van Gemert, J., Veenman, C., Smeulders, A., Geusebroek, J.: Visual word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1271–1283 (2009)

    Article  Google Scholar 

  65. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical geometry of non-rigid shapes. Comput. Rev. 51(4), 222–223 (2010)

    Google Scholar 

  66. Bronstein, A., Bronstein, M., Castellani, U., Falcidieno, B., Fusiello, A., Godil, A., Guibas, L., Kokkinos, I., Lian, Z., Ovsjanikov, M., Patané, G., Spagnuolo, M., Toldo, R.: SHREC2010: robust large-scale shape retrieval benchmark. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval (3DOR), pp. 93–100 (2010)

  67. Lian Z, Zhang J, Choi S, Elnaghy H, Sana J, Furuya T, Gıachetti A, Güler A, Lai L, Li C, Li H, Limberger F, Martin R, Nakanishi R, Neto A, Nonato L, Ohbuchi R, Pevzner K, Pickup D, Rosin P, Sharf A, Sun L, Sun X, Tari Z, Ünal G, Wilson R. SHREC’15 track: non-rigid 3D shape retrieval. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, pp. 257–266 (2015)

  68. Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Mach. Vis. Appl. 19, 261–275 (2008)

    Article  Google Scholar 

  69. Li, C., Hamza, A.: Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey. Multimed. Syst. 20(3), 253–281 (2014)

  70. Havens, T., Bezdek, J., Keller, J., Popescu, M.: Dunn’s cluster validity index as a contrast measure of VAT images. In: Proceedings of the 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

  71. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3D model retrieval. In: Proceedings of the. IEEE International Conference on Shape Modeling and Applications, pp. 93–102 (2008)

  72. Han, Z., Liu, Z., Han, J., Vong, C., Bu, S., Li, X.: Unsupervised 3D local feature learning by circle convolutional restricted Boltzmann machine. IEEE Trans. Image Process. 25(11), 5331–5344 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  73. Pickup, D., Sun, X., Rosin, P., Martin, R., Cheng, Z., Nie, S., Jin, L.: Shrec’15 track: canonical forms for non-rigid 3d shape retrieval. In: Proceedings of the 8th Eurographics Conference on 3D Object Retrieval, pp. 1–8 (2015)

  74. Wu, Y., He, F., Zhang, D., Li, X.: Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Trans. Serv. Comput. 11(2), 341–353 (2015)

    Article  Google Scholar 

  75. Yang, Y., He, F., Han, S., Liang, Y., Cheng, Y.: A novel attribute-based encryption approach with integrity verification for CAD assembly models. Engineering 7(6), 787–797 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Nature Science Foundation of China (No. 62102213, 62262056); National Key R &D plan (No. 2020YFC1523305); Natural Science Youth Foundation of Qinghai Province (No. 2023-ZJ-947Q); Major R &D and Transformation Projects in Qinghai Province (2021-GX-111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhou, M., Zhang, D. et al. Improved biharmonic kernel signature for 3D non-rigid shape matching and retrieval. Vis Comput (2024). https://doi.org/10.1007/s00371-023-03254-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03254-6

Keywords

Navigation