Skip to main content
Log in

A two-stage model for spatial downscaling of daily precipitation data

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Providing reliable and accurate high-resolution meteorological data is very significant to guide the rapid response to extreme weather conditions. However, due to the constraints of computing power and simulation time, the spatial resolution of existing all global climate models is low, and it is unable to provide meteorological data with more precise resolution at local scale. In this research, a deep learning downscaling model called two-stage multi-scale feature extraction network (TSMFN) is proposed. By combining ERA5 reanalysis data and terrain data, spatial downscaling of global precipitation measurement mission precipitation data is carried out. Specifically, in the first stage of the network, several multi-scale residual Inception blocks are used to extract multi-scale features of low-resolution precipitation data; several residual-based residual multi-scale cross blocks are used to fully excavate multi-scale features after the fusion of multiple data. In the second stage of the TSMFN, the output feature map after the fusion of the previous stage is fused with the high-resolution monthly average precipitation data, and several progressive multistage Swin Transformer blocks are constructed to overcome the problems that the reconstructed image of a general convolutional neural network is smooth and cannot reflect the real spatial distribution of precipitation. Finally, a hybrid loss function combining \(L_{1}\) loss function and focal frequency loss function is proposed to alleviate the ill-posedness of the downscaling. By comparing the proposed algorithm with some advanced deep learning downscaling algorithms, the results of the experiment show that the TSMFN model is significantly better in terms of generated image quality and multiple evaluation indexes, and the model has stronger generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All the data used can be downloaded from the official websites provided in the paper, and the processing code of relevant data can be obtained by contacting the author.

References

  1. Karl, T.R., Trenberth, K.E.: Modern global climate change. Science 302(5651), 1719–1723 (2003)

    Article  Google Scholar 

  2. Liu, Y., Ganguly, A.R., Dy, J.: Climate downscaling using YNet: A deep convolutional network with skip connections and fusion. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 3145–3153 (2020)

  3. Misra, V., Dirmeyer, P.A., Kirtman, B.P.: Dynamic downscaling of seasonal simulations over South America. J. Clim. 16(1), 103–117 (2003)

    Article  Google Scholar 

  4. Vandal, T., Kodra, E., Ganguly, S., et al.: DeepSD: Generating high resolution climate change projections through single image super-resolution. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 1663–1672 (2017)

  5. Kim, J., Lee, M., Han, H., et al.: Case study: aevelopment of the CNN model considering teleconnection for spatial downscaling of precipitation in a climate change scenario. Sustainability. 14(8), 4719 (2022)

    Article  Google Scholar 

  6. Cheng, W.C., Shi, X.K., Zhang, W.J., et al.: An NWP precipitation products downscaling method based on deep learning. J. Trop. Meteorol. 36, 307–316 (2020)

    Google Scholar 

  7. Wu, Y., Zhang, Z., Crabbe, M.J.C., et al.: Statistical learning-based spatial downscaling models for precipitation distribution. Adv. Meteorol. (2022). https://doi.org/10.1155/2022/3140872

    Article  Google Scholar 

  8. Sathianarayanan, M., Hsu, P.H.: Spatial downscaling of Gpm imerg v06 gridded precipitation using machine learning algorithms. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 48, 327–332 (2023)

    Article  Google Scholar 

  9. Muqi, Z., Xinyu, W., Yun, B., et al.: Statistical downscaled climate projection dataset for China using artificial neural network. Beijing Da Xue Xue Bao. 58(2), 221–233 (2022)

    Google Scholar 

  10. Sulaiman, N.A., Shaharudin, S.M., Zainuddin, N.H., et al.: Improving support vector machine rainfall classification accuracy based on Kernel parameters optimization for statistical downscaling approach. Int. J. (2020). https://doi.org/10.30534/ijatcse/2020/9191.42020

    Article  Google Scholar 

  11. Yu, F.C., Zhu, S.Y., Zhang, G.X., et al.: A downscaling method for land surface air temperature of ERA5 reanalysis dataset under complex terrain conditions in mountainous areas. J. Geo-inf. Sci. 24(4), 750–765 (2022)

    Google Scholar 

  12. Lu, Z., Chen, Y.: Single image super-resolution based on a modified U-net with mixed gradient loss. Signal Image Video Proc. 16, 1–9 (2022)

    Google Scholar 

  13. Accarino, G., Chiarelli, M., Immorlano, F., et al.: MSG-GAN-SD: a multi-scale gradients GAN for statistical downscaling of 2-meter temperature over the EURO-CORDEX domain. AI. 2(4), 600–620 (2021)

    Article  Google Scholar 

  14. Fang, J., Lin, H., Chen, X., et al.: A hybrid network of cnn and transformer for lightweight image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1103–1112 (2022)

  15. Höhlein, K., Kern, M., Hewson, T., et al.: A comparative study of convolutional neural network models for wind field downscaling. Meteorol. Appl. 27(6), e1961 (2020)

    Article  Google Scholar 

  16. Wang, X., Chan, K.C.K., Yu, K., et al.: EDVR: Video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0 (2019)

  17. Dong, C., Loy, C.C., He, K., et al.: Learning a deep convolutional network for image super-resolution. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part IV 13. Springer International Publishing. pp. 184–199 (2014)

  18. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1646–1654 (2016)

  19. Lai, W.S., Huang, J.B., Ahuja, N., et al.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 624–632 (2017)

  20. Lim, B., Son, S., Kim, H., et al.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.136–144 (2017)

  21. Tong, T., Li, G., Liu, X., et al.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4799–4807 (2017)

  22. Li, J., Fang, F., Mei, K., et al.: Multi-scale residual network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 517–532 (2018)

  23. Zhang, Y., Li, K., Li, K., et al.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 286–301 (2018)

  24. Fang, F., Li, J., Zeng, T.: Soft-edge assisted network for single image super-resolution. IEEE Trans. Image Process. 29, 4656–4668 (2020)

    Article  Google Scholar 

  25. Li, J., Fang, F., Li, J., et al.: MDCN: Multi-scale dense cross network for image super-resolution. IEEE Trans. Circuits Syst. Video Technol. 31(7), 2547–2561 (2020)

    Article  Google Scholar 

  26. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3517–3526 (2021)

  27. Chen, J., Huang, D., Zhu, X., et al.: Gradient-guided and multi-scale feature network for image super-resolution. Appl. Sci. 12(6), 2935 (2022)

    Article  Google Scholar 

  28. Liang, J., Cao, J., Sun, G., et al.: SwinIR: Image Restoration Using Swin Transformer. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, pp. 1833–1844 (2021)

  29. Cheng, J., Kuang, Q., Shen, C., et al.: ResLap: generating high-resolution climate prediction through image super-resolution. IEEE Access. 8, 39623–39634 (2020)

    Article  Google Scholar 

  30. Sha, Y., Gagne, D.J., II., West, G., et al.: Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part II: Daily precipitation. J. Appl. Meteorol. Climatol. 59(12), 2075–2092 (2020)

    Article  Google Scholar 

  31. Sharma, S.C.M., Mitra, A.: ResDeepD: a residual super-resolution network for deep downscaling of daily precipitation over India. Environ. Data Sci. 1, e19 (2022)

    Article  Google Scholar 

  32. Harilal, N., Singh, M., Bhatia, U.: Augmented convolutional LSTMs for generation of high-resolution climate change projections. IEEE Access. 9, 25208–25218 (2021)

    Article  Google Scholar 

  33. Wang, J., Liu, Z., Foster, I., et al.: Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geosci. Model Dev. 14(10), 6355–6372 (2021)

    Article  Google Scholar 

  34. Kumar, B., Atey, K., Singh, B.B., et al.: On the modern deep learning approaches for precipitation downscaling. Earth Sci. Inf. 16, 1–14 (2023)

    Article  Google Scholar 

  35. Xiang, L., Xiang, J., Guan, J., et al.: A novel reference-based and gradient-guided deep learning model for daily precipitation downscaling. Atmosphere 13(4), 511 (2022)

    Article  Google Scholar 

  36. Singh, M., Acharya, N., Jamshidi, S., et al.: DownScaleBench for developing and applying a deep learning based urban climate downscaling-first results for high-resolution urban precipitation climatology over Austin, Texas. Comput. Urban Sci. 3(1), 22 (2023)

    Article  Google Scholar 

  37. Huffman, G.J., Bolvin, D.T., Braithwaite, D., et al.: Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). Satell. Precip. Meas. 1, 343–353 (2020)

    Article  Google Scholar 

  38. Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020)

    Article  Google Scholar 

  39. Shi, W., Caballero, J., Huszár, F., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1874–1883 (2016)

  40. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need]. Adv. Neural Inf. Proc. Syst. pp.30 (2017)

  41. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022 (2021)

  42. Jiang, L., Dai, B., Wu, W., et al.: Focal frequency loss for image reconstruction and synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13919–13929 (2021)

  43. Zhu, X., Hu, H., Lin, S., et al.: Deformable convnets v2: More deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9308–9316 (2019)

  44. Maggioni, V., Meyers, P.C., Robinson, M.D.: A review of merged high-resolution satellite precipitation product accuracy during the tropical rainfall measuring mission (TRMM) era. J. Hydrometeorol. 17(4), 1101–1117 (2016)

    Article  Google Scholar 

  45. Ji, Y., Sun, X., Xu, Y., et al.: Summer regional pentad extreme precipitation in eastern China and their possible causes. Front. Earth Sci. 8, 598025 (2021)

    Article  Google Scholar 

  46. Zhou, K., Sun, J., Zheng, Y., et al.: Quantitative precipitation forecast experiment based on basic NWP variables using deep learning. Adv. Atmos. Sci. 39(9), 1472–1486 (2022)

    Article  Google Scholar 

  47. Chen, H., Qin, H., Dai, Y.: FC-ZSM: spatiotemporal downscaling of rain radar data using feature constrained zooming slow-mo network. Front. Earth Sci. 10, 756 (2022)

    Google Scholar 

  48. Cai, R., Ding, Y., Lu, H.: FreqNet: A frequency-domain image super-resolution network with dicrete cosine transform. arXiv preprint arXiv. pp. 2111.10800, (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawang Qin.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest with anyone and any institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Qin, H., Hou, X. et al. A two-stage model for spatial downscaling of daily precipitation data. Vis Comput (2024). https://doi.org/10.1007/s00371-023-03236-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03236-8

Keywords

Navigation