Skip to main content
Log in

Towards property-preserving JPEG encryption with structured permutation and adaptive group differentiation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The security and privacy of digital images are a major concern in cyberspace. JPEG is the most widely used image compression standard and yet there are problems with format compatibility and file size preservation in most of the modern encryption schemes for JPEG images. To address these problems, we propose a novel properties-preserving encryption scheme that obfuscates JPEG images by scrambling AC and DC coefficients. The key observation is that an innovative structured permutation has a remarkable effect on enciphering the coefficients and simultaneously prevents value overflow as well as size increment. On this basis, we first leverage the row-wise reordering and reversing technique to disorganize the DC coefficients. Afterward, a series of groups of consecutive DC differential values are produced using adaptive group differentiation and each of them is independently permuted inside. Finally, we perform block-wise ACCs permutation and intra-block ACCs shuffling to further confuse the outline of the original image. Moreover, invariant features regarding the coefficients are incorporated in the key generation process to resist various cryptanalytic attacks. Experimental results demonstrate a significant improvement in terms of format compatibility and file size preservation, and verify the security against various attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen, C.H., Lee, C.Y.: A JPEG-like texture compression with adaptive quantization for 3D graphics application. Vis. Comput. 18, 29–40 (2002)

    Article  Google Scholar 

  2. Ince, I.F., Bulut, F., Kilic, I., Yildirim, M.E., Ince, O.F.: Low dynamic range discrete cosine transform (LDR–DCT) for high-performance JPEG image compression. Vis. Comput. 38(5), 1845–1870 (2022)

    Article  Google Scholar 

  3. Li, P., Lo, K.-T.: Survey on JPEG compatible joint image compression and encryption algorithms. IET Signal Process. 14(8), 475–488 (2020)

    Article  Google Scholar 

  4. Zhang, L.Y., Liu, Y., Pareschi, F., Zhang, Y., Wong, K.W., Rovatti, R., Setti, G.: On the security of A class of diffusion mechanisms for image encryption. IEEE Trans. Cybern. 48(4), 1163–1175 (2017)

    Article  Google Scholar 

  5. Chuman, T., Sirichotedumrong, W., Kiya, H.: Encryption-then-compression systems using grayscale-based image encryption for JPEG images. IEEE Trans. Inf. Forensics Secur. 14(6), 1515–1525 (2018)

    Article  Google Scholar 

  6. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019)

    Article  Google Scholar 

  7. Li, P., Lo, K.-T.: Joint image compression and encryption based on order-8 alternating transforms. J. Visual Commun. Image Represent. 44, 61–71 (2017)

    Article  Google Scholar 

  8. Li, P., Lo, K.-T.: A content-adaptive joint image compression and encryption scheme. IEEE Trans. Multimed. 20(8), 1960–1972 (2017)

    Article  Google Scholar 

  9. Li, P., Lo, K.-T.: Joint image encryption and compression schemes based on 16×16 DCT. J. Vis. Commun. Image Represent. 58, 12–24 (2019)

    Article  Google Scholar 

  10. Ong, S.Y., Minemura, K., Wong, K.S.: Progressive quality degradation in JPEG compressed image using dc block orientation with rewritable data embedding functionality. In: Proceedings of 2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, pp. 4574–4578 (2014)

  11. Minemura, K., Moayed, Z., Wong, K.S., Qi, X., Tanaka, K.: JPEG image scrambling without expansion in bitstream size. In Proceedings of 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, pp. 261–264 (2013)

  12. Ong, S., Wong, K., Qi, X., Tanaka, K.: Beyond format-compliant encryption for JPEG image. Signal Process. Image Commun. 31, 47–60 (2015)

    Article  Google Scholar 

  13. Li, S., Zhang, Y.: Quantized DCT coefficient category address encryption for JPEG image. KSII Trans. Internet Inf. Syst. 10(4), 1790–1806 (2016)

    Google Scholar 

  14. Qian, Z., Xu, H., Luo, X., Zhang, X.: New Framework of reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Circuits Syst. Video Technol. 29(2), 351–362 (2019)

    Article  Google Scholar 

  15. Ji, X.Y., Bai, S., Guo, Y., Guo, H.: A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 321–333 (2015)

    Article  Google Scholar 

  16. Xu, Y., Xiong, L., Xu, Z., Pan, S.: A content security protection scheme in JPEG compressed domain. J. Vis. Commun. Image Represent. 25(5), 805–813 (2014)

    Article  Google Scholar 

  17. Liang, H., Zhang, X., Cheng, H.: Huffman-code based retrieval for encrypted JPEG images. J. Vis. Commun. Image Represent. 61, 149–156 (2019)

    Article  Google Scholar 

  18. Niu, X., Zhou, C., Ding, J., Yang, B.: JPEG encryption with file size preservation. In: Proceedings of 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IEEE, Harbin, China, pp. 308–311 (2008)

  19. Shreyamshakumar, B.K., Patil, C.R.: JPEG image encryption using fuzzy PN sequences. Signal Image Video Process. 4(4), 419–427 (2010)

    Article  Google Scholar 

  20. Unterweger, A., Uhl, A.: Length-preserving bit-stream-based JPEG encryption. In: Proceedings of Multimedia Security, ACM, Coventry, United Kingdom, pp. 85–90 (2012)

  21. Cheng, H., Zhang, X., Yu, J., Li, F.: Markov process-based retrieval for encrypted JPEG images. EURASIP J. Inf. Secur. 2016(1), 1 (2016)

    Article  Google Scholar 

  22. Cheng, H., Zhang, X., Yu, J., Zhang, Y.: Encrypted JPEG image retrieval using block-wise feature comparison. J. Vis. Commun. Image Represent. 40, 111–117 (2016)

    Article  Google Scholar 

  23. Qian, Z., Zhang, X., Wang, S.: Reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Multimed. 16(5), 1486–1491 (2014)

    Article  Google Scholar 

  24. Qian, Z., Zhou, H., Zhang, X., Zhang, W.: Separable reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Dependable Secur. Comput. 15(6), 1055–1067 (2016)

    Article  Google Scholar 

  25. Chang, J.C., Lu, Y.Z., Wu, H.L.: A separable reversible data hiding scheme for encrypted JPEG bitstream. Signal Process. 133, 135–143 (2017)

    Article  Google Scholar 

  26. He, J., Huang, S., Tang, S., Huang, J.: JPEG image encryption with improved format compatibility and file size preservation. IEEE Trans. Multimed. 20(10), 2645–2658 (2018)

    Article  Google Scholar 

  27. He, J., Chen, J., Luo, W., Tang, S., Huang, J.: A novel high-capacity reversible data hiding scheme for encrypted JPEG bitstream. IEEE Trans. Circuits Syst. Video Technol. 29(12), 3501–3515 (2019)

    Article  Google Scholar 

  28. Minemura, K., Wong, K.S., Qi, X., Tanaka, K.: A scrambling framework for block transform compressed image. Multimed. Tools Appl. 76, 6709–6729 (2017)

    Article  Google Scholar 

  29. Khan, N.A., Altaf, M., Khan, F.A.: Selective encryption of JPEG images with chaotic based novel S-box. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-020-10110-5

    Article  Google Scholar 

  30. Qin, C., Hu, J., Li, F., Qian, Z., Zhang, X.: JPEG image encryption with adaptive DC coefficient prediction and RS pair permutation. IEEE Trans. Multimed. (2022). https://doi.org/10.1109/TMM.2022.3148591

    Article  Google Scholar 

  31. Int. Telecommunication Union: Digital Compression and Coding of Continuous-tone Still Images-Requirements and Guidelines. ITU Std. T.81 (1992)

  32. Yi, S., Zhou, Y.: Separable and reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans. Multimed. 21(1), 51–64 (2019)

    Article  Google Scholar 

  33. Su, G.D., Chang, C.C., Lin, C.C.: A high capacity reversible data hiding in encrypted AMBTC-compressed images. IEEE Access 8, 26984–27000 (2020)

    Article  Google Scholar 

  34. Lian, S.: Multimedia Content Encryption: Techniques and Applications. CRC Press, USA (2008)

    Book  Google Scholar 

  35. Li, B., Feng, Y., Xiong, Z., Yang, W., Liu, G.: Research on AI security enhanced encryption algorithm of autonomous IoT systems. Inf. Sci. 575, 379–398 (2021)

    Article  MathSciNet  Google Scholar 

  36. Su, G.D., Chang, C.C.: Toward high-capacity crypto-domain reversible data hiding with huffman-based lossless image coding. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02613-z

    Article  Google Scholar 

  37. Talhaoui, M.Z., Wang, X., Midoun, M.A.: A new one-dimensional cosine polynomial chaotic map and its use in image encryption. Vis. Comput. 37, 541–551 (2021)

    Article  Google Scholar 

  38. Li, C., Zhang, Y., Li, H., Zhou, Y.: Visual image encryption scheme based on inter-intra-block scrambling and weighted diffusion. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02812-2

    Article  Google Scholar 

  39. Schaefer, G., Stich, M.: ‘UCID: an uncompressed color image database. In: Storage and Retrieval Methods and Applications for Multimedia, Series Proceedings of SPIE, vol. 5307, pp. 472–480 (2004)

  40. BOWS-2 Dataset. Accessed: Jul. 1, 2020. [Online]. http://bows2.ec-lille.fr/

  41. CorelDraw Dataset. Accessed: Jul. 1, 2020. [Online]. http://www.corel.com

  42. DOTA Dataset. Accessed: Jan. 22, 2023. [Online]. https://captain-whu.github.io/DOTA/dataset.html

  43. Yuan, Y., He, H., Chen, F.: On the security of encrypted JPEG image with adaptive key generated by invariant characteristic. In: International Workshop on Digital Watermarking, pp. 58–71. Springer (2021)

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China under Grant No. 62272103, and in part by the Natural Science Foundation of Fujian Province under Grant Nos. 2020J01300, 2022J01971, 2022J01974, and 2022J01975, and in part by the Open Fund of Engineering Research Center for ICH Digitalization and Multi-source Information Fusion (Fujian Polytechnic Normal University) under Grant No. G3-KF2205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Chen Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, GD., Chang, CC., Lin, CC. et al. Towards property-preserving JPEG encryption with structured permutation and adaptive group differentiation. Vis Comput (2023). https://doi.org/10.1007/s00371-023-03174-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03174-5

Keywords

Navigation