Skip to main content
Log in

Residual network-based ocean wave modelling from satellite images using ensemble Kalman filter

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Nonlinear ocean waves have a significant impact on the functioning of several offshore activities. Predicting the internal ocean waves plays a crucial role on submarine and ship operations. Data assimilation is a mechanism in which data observed is interpreted, processed and adapted. The existing works for estimating the future atmospheric condition are highly dependent on the exact initial state, which mostly differ from the observation. This paper proposes modelling of internal ocean waves using automatic internal wave detection and data assimilation. Ensemble Kalman filtering method is used to model ocean waves. The proposed system is focused on satellite images. The images are pre-processed for speckle noise using adaptive filters. Enhanced residual network is used for edge detection. Unlike the existing edge detection methods that have high complexity, this enhanced residual network works with low complexity and makes a direct mapping between the input wave image and wave edge. Finally, the potential edges of the internal wave are detected and adapted using ensemble Kalman filter. Adaptive thresholding technique is used to determine the appropriate threshold to segregate objects from background. The proposed enhanced edge detection model is compared w.r.t to the parameters weighted cross-entropy loss function, accuracy and root mean squared error with canny edge detection and proved to be better. The detection of internal wave is demonstrated, and the accuracy of the approach is 91% with low RMSE when compared to existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data sets generated and analysed during the current study are available in the [European Space agency, ERS-1 and ERS-2 SAR] repository, [http://www.esa.int/Applications/Observing_the_Earth/ERS_1_and_2SuluSea].

References

  1. Galanis, G., Emmanouil, G., Chu, P.C., et al.: A new methodology for the extension of the impact of data assimilation on ocean wave prediction. Ocean Dyn. 59, 523–535 (2009). https://doi.org/10.1007/s10236-009-0191-8

    Article  Google Scholar 

  2. Moore, A.M., Martin, M.J., Akella, S., Arango, H.G., Balmaseda, M., Bertino, L., Ciavatta, S., Cornuelle, B., Cummings, J., Frolov, S., Lermusiaux, P., Oddo, P., Oke, P.R., Storto, A., Teruzzi, A., Vidard, A., Weaver, A.T.: Synthesis of ocean observations using data assimilation for operational, real-time and reanalysis systems: a more complete picture of the state of the ocean. Front. Mar. Sci. 6, 90 (2019). https://doi.org/10.3389/fmars.2019.00090

    Article  Google Scholar 

  3. Aragh, S., Nwogu, O., Lyzenga, D.: Improved Estimation of Ocean Wave Fields From Marine Radars Using Data Assimilation Techniques. Paper presented at the The Eighteenth International Offshore and Polar Engineering Conference, Vancouver, Canada (2008)

  4. Caires, S., Marseille, G.J., Verlaan, M., Stoffelen, A.: North Sea wave analysis using data assimilation and mesoscale model forcing winds. J. Waterway Port Coast. Ocean Eng. (2018). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000439

    Article  Google Scholar 

  5. European Space agency, ERS 1 and ERS2 SAR. http://www.esa.int/Applications/Observing_the_Earth/ERS_1_and_2Sulu. Sea, Last accessed May 5th 2021

  6. Rodenas, J.A., Garello, R.: Internal wave detection and location in SAR images using wavelet transform. IEEE Trans. Geosci. Remote Sens. 36(5), 1494–1507 (1998)

    Article  Google Scholar 

  7. Divya, C., Vasavi, S., Sarma, A.S.: Ocean internal wave detection from sar images using particle swarm optimization. In: 2020 Third International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bengaluru, India, pp. 1–6 (2020). https://doi.org/10.1109/ICAECC50550.2020.9339511

  8. Simonin, D., Tatnall, A.R., Robinson, I.S.: The automated detection and recognition of internal waves. Int. J. Remote Sens. 30(17), 4581–4598 (2009). https://doi.org/10.1080/01431160802621218

    Article  Google Scholar 

  9. WienerNorbert, J.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Wiley, New York (1949)

    Google Scholar 

  10. Kumar, A., Manjunatha Chari, K.: Noise reduction using modified wiener filter in digital hearing aid for speech signal enhancements. J Intell Anal 29(1), 1360–1378 (2019). https://doi.org/10.1515/jisys-2017-0509

    Article  Google Scholar 

  11. Al-Amaren, A., Ahmad, M.O., Swamy, M.N.S.: RHN: a residual holistic neural network for edge detection. IEEE Access 9, 74646–74658 (2021). https://doi.org/10.1109/ACCESS.2021.3078411

    Article  Google Scholar 

  12. Saulter, A.N., Bunney, C., King, R.R., Waters, J.: An application of NEMOVAR for regional wave model data assimilation. Front. Mar. Sci. 7, 579834 (2020). https://doi.org/10.3389/fmars.2020.579834

    Article  Google Scholar 

  13. Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Zhang, X.: Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Front. Mar. Sci. 6(437), 1–25 (2019). https://doi.org/10.3389/fmars.2019.00437

    Article  Google Scholar 

  14. Mohaghegh, F., Alam, M.R., Murthy, J.: Rapid Phase-Resolved Prediction of Nonlinear Dispersive Waves Using Machine Learning. arXiv: 2007.15250

  15. Sai Pravallika, M., Naga Varun, B., Vasavi, S., Sandeep, N., Jaya Priya, M., Sashikanth Sarma, A.: Ocean wave modeling from satellite images using data assimilation. In: Proceedings of International Conference on Data Science and Applications. Lecture Notes in Networks and Systems, vol. 288. Springer, Singapore. https://doi.org/10.1007/978-981-16-5120-5_7

  16. Zagoruyko, S., Komodakis, N.: Wide Residual Networks, Computer Vision and Pattern Recognition (2016). arXiv:1605.07146

  17. Vasavi, S., Priyadarshini, N.K., Vardhan, K.H.: Invariant feature based darknet architecture for moving object classification. IEEE Sensors J. (2020). https://doi.org/10.1109/JSEN.2020.3007883

    Article  Google Scholar 

  18. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT, Cambridge (2012)

    MATH  Google Scholar 

  19. Ke, Qu., Fengqin, Z., Wenhua, S.: A novel method for internal wave monitoring based on expansion of the sound speed profile. Acta Oceanol. Sin. 38(4), 183–189 (2019). https://doi.org/10.1007/s13131-019-1422-6

    Article  Google Scholar 

  20. Bocaniova, S.A., Ullmanna, C., Rinkea, K., Lambb, K.G., Boehreraa, B.: Internal waves and mixing in a stratified reservoir: Insights from three-dimensional modeling. Limnologica 49, 52–67 (2014)

    Article  Google Scholar 

  21. Zhang, X., Li, X.: Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes Seas. IEEE Trans. Geosci. Remote Sens. 59(4), 2822–2832 (2021)

    Article  Google Scholar 

  22. Cheng, S.B., Quilodrán-Casas, C., Ouala, S., Farchi, A., Liu, C., Tandeo, P., Fablet, R., Lucor, D., Iooss, B., Brajard, J., Xiao, D.H., Janjic, T., Ding, W.P., Guo, Y.K., Carrassi, A., Bocquet, M., Arcucci, R.: Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA J. Autom. Sinica 10(6), 1361–1387 (2023). https://doi.org/10.1109/JAS.2023.123537

    Article  Google Scholar 

  23. Houghton, I.A., Penny, S.G., Hegermiller, C., Cesaretti, M., Teicheira, C., Smit, P.B.: Ensemble-based data assimilation of significant wave height from Sofar Spotters and satellite altimeters with a global operational wave model. Ocean Model 183, 102200 (2023)

    Article  Google Scholar 

  24. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput. Appl. 35, 4099–4131 (2023). https://doi.org/10.1007/s00521-022-07854-6

    Article  Google Scholar 

  25. Roger Labbe, K.: Bayesian Filters in Python, Github, pp. 498–506 (2014). https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

  26. Siva Reddy: A Study on Global Ocean Analysis from Ocean Data Assimilation System and its Sensitivity to Observations and Forcing Fields, pp. 17–18. https://doi.org/10.13140/RG.2.1.4459.4326

  27. Ming, Y., Li, H., He, X.: Contour completion without region segmentation. IEEE Trans. Image Process. 25(8), 3597–3611 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, X., Zheng, Q., Li, X.: Satellite data-driven internal solitary wave forecast based on machine learning techniques. In: Li, X., Wang, F. (eds.), Artificial Intelligence Oceanography. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-6375-9_4

  29. Shao, Qi., Li, W., Han, G., Hou, G., Liu, S., Gong, Y., Ping, Qu.: A Deep Learning Model for Forecasting Sea Surface Height Anomalies and Temperatures in the South China Sea (2021). https://doi.org/10.1029/2021JC017515

    Article  Google Scholar 

  30. Xue, Q., Hu, H., Bai, Y., et al.: Underwater image enhancement algorithm based on color correction and contrast enhancement. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-03117-0

    Article  Google Scholar 

  31. Zardoua, Y., Astito, A., Boulaala, M.: A survey on horizon detection algorithms for maritime video surveillance: advances and future techniques. Vis. Comput. 39, 197–217 (2023). https://doi.org/10.1007/s00371-021-02321-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vasavi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasavi, S., Pravallika, M.S., Varun, B.N. et al. Residual network-based ocean wave modelling from satellite images using ensemble Kalman filter. Vis Comput (2023). https://doi.org/10.1007/s00371-023-03169-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03169-2

Keywords

Navigation