Skip to main content
Log in

PowerHierarchy: visualization approach of hierarchical data via power diagram

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Voronoi treemaps are widely used for hierarchical data visualization. Existing methods calculate the visualization layouts of hierarchical data by combining the proportion optimization of weights and Lloyd’s method of sites. However, this may not only produce results with large area errors but also require more time consumption. Besides, the relative visualization position of the same data element between adjacent frames in dynamic hierarchical data may be changed abruptly, resulting in unclear visual results. To this end, we propose an efficient and topological structure preserved visualization approach, called PowerHierarchy, for visualizing hierarchical data. Firstly, an improved version of the power diagram computing algorithm is introduced to generate the visualization layouts of each data element in the hierarchy. Unlike random initialization, we construct a centroidal Voronoi tessellation as input and then use a Breadth-First traversing strategy to adapt the depth information to produce visual layouts of static hierarchical data. Based on this, an updating scheme is presented for visualizing dynamic hierarchical data, where previous results are iteratively fed as inputs to initialize current layouts. Besides, the external boundary sites and their subsites are projected onto the visual boundary and then moved into the visual region with the relative position preserved. Experimental results on several datasets demonstrate the efficiency, accuracy, and topology preservation advantage of our proposed visualization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Vernier, E.F., Telea, A.C., Comba, J.: Quantitative comparison of dynamic treemaps for software evolution visualization. In: 2018 IEEE Working Conference on Software Visualization (VISSOFT), pp. 96–106 (2018). https://doi.org/10.1109/vissoft.2018.00018. IEEE

  2. Vernier, E., Sondag, M., Comba, J., Speckmann, B., Telea, A., Verbeek, K.: Quantitative comparison of time-dependent treemaps. Comput. Graph. Forum 39(3), 393–404 (2020). https://doi.org/10.1111/cgf.13989

    Article  Google Scholar 

  3. Hahn, S., Trümper, J., Moritz, D., Döllner, J.: Visualization of varying hierarchies by stable layout of voronoi treemaps. In: 2014 International Conference on Information Visualization Theory and Applications (IVAPP), pp. 50–58 (2014). https://doi.org/10.5220/0004686200500058. IEEE

  4. Balzer, M., Deussen, O.: Voronoi treemaps. In: IEEE Symposium on Information Visualization, 2005. INFOVIS 2005., pp. 49–56 (2005). https://doi.org/10.1109/INFVIS.2005.1532128. IEEE

  5. Nocaj, A., Brandes, U.: Computing Voronoi treemaps: Faster, simpler, and resolution-independent. Comput. Graph. Forum 31(3), 855–864 (2012)

    Article  Google Scholar 

  6. Gotz, D.: Dynamic voronoi treemaps: a visualization technique for time-varying hierarchical data. Phys. Rev. A 30(2), 150–156 (2011). https://doi.org/10.1109/TADVP.2007.896008

    Article  Google Scholar 

  7. Sud, A., Fisher, D., Lee, H.-P.: Fast dynamic voronoi treemaps. In: 2010 International Symposium on Voronoi Diagrams in Science and Engineering, pp. 85–94 (2010). https://doi.org/10.1109/isvd.2010.16. IEEE

  8. Xin, S.-Q., Lévy, B., Chen, Z., Chu, L., Yu, Y., Tu, C., Wang, W.: Centroidal power diagrams with capacity constraints: computation, applications, and extension. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016). https://doi.org/10.1145/2980179.2982428

    Article  Google Scholar 

  9. Scheibel, W., Trapp, M., Limberger, D., Döllner, J.: A taxonomy of treemap visualization techniques. In: VISIGRAPP (3: IVAPP), pp. 273–280 (2020). https://doi.org/10.5220/0009153902730280

  10. Khalid, Z.M., Zeebaree, S.R.: Big data analysis for data visualization: a review. Int. J. Sci. Bus. 5(2), 64–75 (2021). https://doi.org/10.5281/zenodo.4462042

    Article  Google Scholar 

  11. Scheibel, W., Limberger, D., Döllner, J.: Survey of treemap layout algorithms. In: Proceedings of the 13th International Symposium on Visual Information Communication and Interaction, pp. 1–9 (2020). https://doi.org/10.1145/3430036.3430041

  12. Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. Read. Inf. Visualiz. Using Vision Think (1999). https://doi.org/10.1109/visual.1991.175815

    Article  Google Scholar 

  13. Knauthe, V., Ballweg, K., Wunderlich, M., Landesberger, T., Guthe, S.: Influence of container resolutions on the layout stability of squarified and slice-and-dice treemaps. In: Eurographics/IEEE VGTC Conference on Visualization, pp. 97–101 (2020). https://doi.org/10.2312/evs20201055

  14. Ahmed, A.G.: Voronoi tree maps with circular boundaries. In: Proceedings of the Conference on Computer Graphics & Visual Computing, pp. 115–116 (2018). https://doi.org/10.2312/cgvc.20181214

  15. Yang, B., Cao, W.: The ordered treemap of weight divided layout algorithm. J. Comput. 30(5), 31–45 (2019). https://doi.org/10.3966/199115992019103005003

    Article  MathSciNet  Google Scholar 

  16. Chen, Y., Du, X., Yuan, X.: Ordered small multiple treemaps for visualizing time-varying hierarchical pesticide residue data. Vis. Comput. 33, 1073–1084 (2017). https://doi.org/10.1007/s00371-017-1373-x

    Article  Google Scholar 

  17. Görtler, J., Schulz, C., Weiskopf, D., Deussen, O.: Bubble treemaps for uncertainty visualization. IEEE Trans. Visual Comput. Graph. 24(1), 719–728 (2017). https://doi.org/10.1109/tvcg.2017.2743959

    Article  Google Scholar 

  18. Wang, Y.-C., Xing, Y., Lin, F., Seah, H.-S., Zhang, J.: Ost: a heuristic-based orthogonal partitioning algorithm for dynamic hierarchical data visualization. J. Visual. (2022). https://doi.org/10.1007/s12650-022-00830-1

    Article  Google Scholar 

  19. Sondag, M., Speckmann, B., Verbeek, K.: Stable treemaps via local moves. IEEE Trans. Visual Comput. Graph. 24(1), 729–738 (2017). https://doi.org/10.1109/tvcg.2017.2745140

    Article  Google Scholar 

  20. Balzer, M.: Capacity-constrained voronoi diagrams in continuous spaces. In: 2009 Sixth International Symposium on Voronoi Diagrams, pp. 79–88 (2009). https://doi.org/10.1109/ISVD.2009.28. IEEE

  21. De Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. (TOG) 31(6), 1–11 (2012). https://doi.org/10.1145/2366145.2366190

    Article  Google Scholar 

  22. Zheng, L., Yao, Y., Wu, W., Xu, B., Zhang, G.: A novel computation method of hybrid capacity constrained centroidal power diagram. Comput. Graph. 97, 108–116 (2021). https://doi.org/10.1016/j.cag.2021.04.007

    Article  Google Scholar 

  23. Zheng, L., Gui, Z., Cai, R., Fei, Y., Zhang, G., Xu, B.: GPU-based efficient computation of power diagram. Comput. Graph. 80, 29–36 (2019). https://doi.org/10.1016/j.cag.2019.03.011

    Article  Google Scholar 

  24. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999). https://doi.org/10.1137/S0036144599352836

    Article  MathSciNet  ADS  Google Scholar 

  25. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987). https://doi.org/10.1137/0216006

    Article  MathSciNet  Google Scholar 

  26. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20(1), 61–76 (1998). https://doi.org/10.1007/pl00009187

    Article  MathSciNet  Google Scholar 

  27. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang, C.: On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM Trans. Graph. (ToG) 28(4), 1–17 (2009). https://doi.org/10.1145/1559755.1559758

    Article  Google Scholar 

  28. Wang, Y.-C., Liu, J., Lin, F., Seah, H.-S.: Generating orthogonal Voronoi treemap for visualization of hierarchical data. Comput. Graph. Int. Conf. (2020). https://doi.org/10.1007/978-3-030-61864-3_33

    Article  Google Scholar 

  29. Bernhardt, J., Funke, S., Hecker, M., Siebourg, J.: Visualizing gene expression data via voronoi treemaps. In: 2009 Sixth International Symposium on Voronoi Diagrams, pp. 233–241 (2009). https://doi.org/10.1109/ISVD.2009.33. IEEE Computer Society

  30. Li, B., Zhang, X.: Tree-coloring problems of bounded treewidth graphs. J. Comb. Optim. 39(1), 156–169 (2020). https://doi.org/10.1007/s10878-019-00461-7

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the National Natural Science Foundation of China (61972128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zheng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest/competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 37954 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Li, T., Wu, W. et al. PowerHierarchy: visualization approach of hierarchical data via power diagram. Vis Comput 40, 1499–1514 (2024). https://doi.org/10.1007/s00371-023-02864-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02864-4

Keywords

Navigation