Skip to main content


Log in

Automatic segmentation method using FCN with multi-scale dilated convolution for medical ultrasound image

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript


Image segmentation plays a critical role in the quantitative and qualitative analysis of medical ultrasound images, directly affecting the follow-up analysis and processing. However, due to the speckle noise, fuzziness, complexity and diversity of medical ultrasound images, the traditional image segmentation algorithms are accessible to leak the boundary at the weak edge of the medical ultrasound image, getting inaccurate results and difficulty extracting the target contour of the ultrasound image. In addition, the non-automatic feature extraction method cannot realize the end-to-end automatic segmentation function. Nevertheless, fully convolutional networks (FCNs) can realize end-to-end automatic semantic segmentation, and are widely used for ultrasound image segmentation. In this paper, we aim at the problems of low segmentation accuracy and long segmentation time in the traditional segmentation method, proposing a novel segmentation method based on an improved FCN with multi-scale dilated convolution for ultrasound image segmentation. The proposed method firstly preprocesses medical ultrasound images through image filtering, normalization and enhancement, and then improves the fully convolutional neural network by constructing four-dilated convolutions with different dilation rates, which can capture multi-scale context feature information and finally postprocesses the segmentation results of the medical ultrasound image by the Laplace correction operator. Our experiments demonstrate that the proposed method achieves better segmentation results than state-of-the-art methods on the breast ultrasound dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.


  1. Kollmann, C.: Diagnostic ultrasound imaging: inside out. Ultrasound Med. Biol. 41(2), 622 (2015)

    Google Scholar 

  2. Ghose, S., Mitra, J., Oliver, A., Martí, R., Lladó, X., Freixenet, J., Vilanova, J.C., Comet, J., Sidibé, D., Meriaudeau, F.: Spectral clustering of shape and probability prior models for automatic prostate segmentation. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2335–2338. IEEE (2012)

  3. Zhang, X., Lin, X., Zhang, Z., Dong, L., Sun, X., Sun, D., Yuan, K.: Artificial intelligence medical ultrasound equipment: application of breast lesions detection. Ultrason. Imag. 42(4–5), 191–202 (2020)

    Google Scholar 

  4. Moraru, L., Moldovanu, S., Nicolae, M.C.: De-noising ultrasound images of colon tumors using daubechies wavelet transform. In: AIP Conference Proceedings, volume 1387, pp. 294–299. American Institute of Physics (2011)

  5. Koundal, D., Gupta, S., Singh, S.: Computer aided thyroid nodule detection system using medical ultrasound images. Biomed. Signal Process. Control 40, 117–130 (2018)

    Google Scholar 

  6. Sahu, S., Dubey, M., Khan, M.I.: Liver ultrasound image analysis using enhancement techniques. Int. J. Adv. Comput. Res. 2(4), 125 (2012)

    Google Scholar 

  7. Ragesh, N.K., Anil, A.R., Rajesh, R.: Digital image denoising in medical ultrasound images: a survey. In: Icgst Aiml-11 Conference, Dubai, UAE, volume 12, pp. 14 (2011)

  8. Talebi, M., Ayatollahi, A., Kermani, A.: Medical ultrasound image segmentation using genetic active contour. J. Biomed. Sci. Eng. 4(2), 105 (2011)

    Google Scholar 

  9. Yang, Y., Yang, P., Zhang, B.: Automatic segmentation in fetal ultrasound images based on improved u-net. J. Phys. Conf. Ser 1693, 012183 (2020)

    Google Scholar 

  10. Meiburger, K.M., Rajendra Acharya, U., Molinari, F.: Automated localization and segmentation techniques for b-mode ultrasound images: a review. Comput. Biol. Med. 92, 210–235 (2018)

    Google Scholar 

  11. Alison Noble, J.: Ultrasound image segmentation and tissue characterization. Proc. Inst. Mech. Eng. [H] 224(2), 307–316 (2010)

    Google Scholar 

  12. Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.-L., Wu, L., Lindeman, G.J., Visvader, J.E.: Generation of a functional mammary gland from a single stem cell. Nature 439(7072), 84–88 (2006)

    Google Scholar 

  13. Bachmann, A.H., Villiger, M.L., Blatter, C., Lasser, T., Leitgeb, R.A.: Resonant doppler flow imaging and optical vivisection of retinal blood vessels. Opt. Express 15(2), 408–422 (2007)

    Google Scholar 

  14. Thomas, J.G., Peters, R.A., Jeanty, P.: Automatic segmentation of ultrasound images using morphological operators. IEEE Trans. Med. Imag. 10(2), 180–186 (1991)

    Google Scholar 

  15. Chandale, A., et al.: Comparative study of different technique for medical image segmentation: a survey. Int. J. Comput. Technol. 11(1), 2169–2174 (2013)

    Google Scholar 

  16. Hao, X., Bruce, C., Pislaru, C., Greenleaf, J.F.: A novel region growing method for segmenting ultrasound images. In: 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 00CH37121), volume 2, p.ages 1717–1720. IEEE (2000)

  17. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Google Scholar 

  18. Ramesh, N., Yoo, J.-H., Sethi, I.K.: Thresholding based on histogram approximation. IEE Proc.-Vis. Image Signal Process. 142(5), 271–279 (1995)

    Google Scholar 

  19. Torre, V., Poggio, T.A.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 2, 147–163 (1986)

    Google Scholar 

  20. Wehrens, R., Buydens, L., Fraley, C., Raftery, A.E.: Model-based clustering for image segmentation and large datasets via sampling. J. Classif. 21(2), 231–253 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    MATH  Google Scholar 

  22. Huang, Q., Luo, Y., Zhang, Q.: Breast ultrasound image segmentation: a survey. Int. J. CARS 12, 493–507 (2017).

  23. Alison Noble, J., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imag. 25(8), 987–1010 (2006)

    Google Scholar 

  24. Cao, Z., Shaomin, M., Dong, M.: Two-attribute e-commerce image classification based on a convolutional neural network. Vis. Comput. 36(8), 1619–1634 (2020)

    Google Scholar 

  25. Qian, L., Libing, H., Zhao, L., Wang, T., Jiang, R.: Sequence-dropout block for reducing overfitting problem in image classification. IEEE Access 8, 62830–62840 (2020)

    Google Scholar 

  26. Ravishankar, H., Prabhu, S.M., Vaidya, V., Singhal, N.: Hybrid approach for automatic segmentation of fetal abdomen from ultrasound images using deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 779–782. IEEE (2016)

  27. Jabbar, S.I., Day, C.R., Heinz, N., Chadwick, E.K.: Using convolutional neural network for edge detection in musculoskeletal ultrasound images. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4619–4626. IEEE (2016)

  28. Dormer, J.D., Guo, R., Shen, M., Jiang, R., Wagner, M.B., Fei, B.: Ultrasound segmentation of rat hearts using convolution neural networks. In: Medical Imaging 2018: Ultrasonic Imaging and Tomography, volume 10580, pp. 253–261. SPIE (2018)

  29. Xue, C., Zhu, L., Huazhu, F., Xiaowei, H., Li, X., Zhang, H., Heng, P.-A.: Global guidance network for breast lesion segmentation in ultrasound images. Med. Image Anal. 70, 101989 (2021)

    Google Scholar 

  30. Xu, M., Huang, K., Chen, Q., Qi, X.: Mssa-net: multi-scale self-attention network for breast ultrasound image segmentation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 827–831. IEEE (2021)

  31. Sharifzadeh, M., Benali, H., Rivaz, H.: Investigating shift variance of convolutional neural networks in ultrasound image segmentation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(5), 1703–1713 (2022)

    Google Scholar 

  32. Wijata, A., Andrzejewski, J., Pyciński, B.: An automatic biopsy needle detection and segmentation on ultrasound images using a convolutional neural network. Ultrason. Imag. 43(5), 262–272 (2021)

    Google Scholar 

  33. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

  34. Chen, L., Cui, Y., Song, H., Huang, B., Yang, J., Zhao, D., Xia, B.: Femoral head segmentation based on improved fully convolutional neural network for ultrasound images. SIViP 14(5), 1043–1051 (2020)

    Google Scholar 

  35. Sun, J., Sun, T., Yuan, Y., Zhang, X., Shi, Y., Lin, Y.: Automatic diagnosis of thyroid ultrasound image based on fcn-alexnet and transfer learning. In: 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), pp. 1–5. IEEE (2018)

  36. Wu, L., Xin, Y., Li, S., Wang, T., Heng, P-A., Ni, D.: Cascaded fully convolutional networks for automatic prenatal ultrasound image segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 663–666. IEEE (2017)

  37. Mishra, D., Chaudhury, S., Sarkar, M., Soin, A.S.: Ultrasound image segmentation: a deeply supervised network with attention to boundaries. IEEE Trans. Biomed. Eng. 66(6), 1637–1648 (2018)

    Google Scholar 

  38. Agrawal, T., Choudhary, P.: Segmentation and classification on chest radiography: a systematic survey. Vis. Comput. (2022).

  39. Xiao, H., Ran, Z., Mabu, S. et al.: SAUNet++: an automatic segmentation model of COVID-19 lesion from CT slices. Vis. Comput. (2022). 57

  40. Qian, L., Zhou, X., Li, Y., Hu, Z.: Unet#: a unet-like redesigning skip connections for medical image segmentation. arXiv:2205.11759 (2022)

  41. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

  42. Zhu, J., Styler, W., Calloway, I.: A cnn-based tool for automatic tongue contour tracking in ultrasound images. arXiv:1907.10210 (2019)

  43. Yang, J., Faraji, M., Basu, A.: Robust segmentation of arterial walls in intravascular ultrasound images using dual path u-net. Ultrasonics 96, 24–33 (2019)

    Google Scholar 

  44. Wei, P., Tong, M.: Attention-dpu: dual-path unet with an attention mechanism for ultrasound image segmentation. J. Phys. Conf. Ser. 1693, 012155 (2020)

    Google Scholar 

  45. Yang, Y., Yang, P., Zhang, B.: Automatic segmentation in fetal ultrasound images based on improved u-net. J. Phys. Conf. Ser. 1693, 012183 (2020)

    Google Scholar 

  46. Zyuzin, V., Chumarnaya, T.: Comparison of unet architectures for segmentation of the left ventricle endocardial border on two-dimensional ultrasound images. In: 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), pp. 110–113. IEEE (2019)

  47. Tran, S.-T., Cheng, C.-H., Nguyen, T.-T., Le, M.-H., Liu, D.-G.: Tmd-unet: triple-unet with multi-scale input features and dense skip connection for medical image segmentation. In: Healthcare, volume 9, pp. 54. Multidisciplinary Digital Publishing Institute (2021)

  48. Shirokikh, B., Shevtsov, A., Dalechina, A., Krivov, E., Kostjuchenko, V., Golanov, A., Gombolevskiy, V., Morozov, S., Belyaev, M.: Accelerating 3d medical image segmentation by adaptive small-scale target localization. J. Imag. 7(2), 35 (2021)

    Google Scholar 

  49. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  50. Han, G., Zhang, M., Wenzhao, W., He, M., Liu, K., Qin, L., Liu, X.: Improved u-net based insulator image segmentation method based on attention mechanism. Energy Rep. 7, 210–217 (2021)

    Google Scholar 

  51. Wang, G., Zuluaga, M.A., Li, W., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, J., Ourselin, et al.: Deepigeos: a deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1559–1572 (2018)

    Google Scholar 

  52. Khan, A., Kim, H., Chua, L.: Pmed-net: pyramid based multi-scale encoder-decoder network for medical image segmentation. IEEE Access 9, 55988–55998 (2021)

    Google Scholar 

  53. Huang, Q., Zhou, Y., Tao, L., Weikang, Yu., Zhang, Y., Huo, L., He, Z.: A chan-vese model based on the Markov chain for unsupervised medical image segmentation. Tsinghua Sci. Technol. 26(6), 833–844 (2021)

    Google Scholar 

  54. Ma, H., Zou, Y., Liu, P.X.: Mhsu-net: a more versatile neural network for medical image segmentation. Comput. Methods Prog. Biomed. 208, 106230 (2021)

    Google Scholar 

  55. Karimi, D., Salcudean, S.E.: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imag. 39(2), 499–513 (2019)

    Google Scholar 

  56. Shrivastava, N., Bharti, J.: Automatic seeded region growing image segmentation for medical image segmentation: a brief review. Int. J. Image Graph. 20(03), 2050018 (2020)

    Google Scholar 

  57. Zuo, Q., Chen, S., Wang, Z.: R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation. Secur. Commun. Netw. (2021).

  58. Taheri, M., Rastgarpour, M., Koochari, A.: A novel method for medical image segmentation based on convolutional neural networks with sgd optimization. J. Electr. Comput. Eng. Innov. (JECEI) 9(1), 37–46 (2021)

  59. Murugappan, V., Sabeenian, R.S.: Texture based medical image classification by using multi-scale gabor rotation-invariant local binary pattern (mgrlbp). Clust. Comput. 22(5), 10979–10992 (2019)

    Google Scholar 

  60. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Google Scholar 

  61. Wang, F., Chen, W., Qiu, L.: Hausdorff derivative laplacian operator for image sharpening. Fractals 27(03), 1950060 (2019)

    MathSciNet  Google Scholar 

  62. Van Vliet, L.J., Young, I.T., Beckers, G.L.: A nonlinear laplace operator as edge detector in noisy images. Comput. Vis. Graph. Image Process. 45(2), 167–195 (1989)

    Google Scholar 

  63. Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax oss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

  64. Karimi, D., Salcudean, S.E.: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imag. 39(2), 499–513 (2019)

    Google Scholar 

  65. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

  66. Badrinarayanan, V., Handa, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv:1505.07293 (2015)

  67. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv:1606.02147 (2016)

  68. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

  69. Zongwei Zhou, Md., Siddiquee, M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imag. 39(6), 1856–1867 (2019)

    Google Scholar 

Download references


This work was supported in part by the Project of Science and Technology Plans of Wenzhou under [Grant No. 2022G0069], in part by Wenzhou Association For Science and Technology under [Grant No. kjfw39], in part by Department of Education of Zhejiang Province under [Grant No. Y202146494], in part by The Soft Science Key Research Project of Zhejiang Province under [Grant No. 2022C25033] and in part by The National Natural Science Foundation of China under [Grant No. 12101465].


Partial financial support was received from Wenzhou Association For Science and Technology under [Grant No. kjfw39], from Department of Education of Zhejiang Province under [Grant No. Y202146494], from The Soft Science Key Research Project of Zhejiang Province under [Grant No. 2022C25033], from The National Natural Science Foundation of China under [Grant No. 12101465].

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiao Zhou.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Huang, H., Xia, X. et al. Automatic segmentation method using FCN with multi-scale dilated convolution for medical ultrasound image. Vis Comput 39, 5953–5969 (2023).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: