Skip to main content
Log in

A novel contrast and saturation prior for image dehazing

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Images captured in bad weather conditions such as fog, mist, haze, etc., are severely degraded due to the scattering of the particles in the atmosphere. These images are inappropriate for various applications of computer vision, e.g., transportation, remote sensing, video surveillance object recognition, etc. Image dehazing is the process of removing the haze effect from an image so that these applications can be benefited. The physical model of haze formation is used to restore a hazy image which requires two parameters to estimate: transmission and airlight. The accuracy of the dehazing depends on the estimation of the transmission. Dark channel prior (DCP) is an effective method to compute the transmission. However, a dark channel underestimates the transmission when an object in the scene has a similar color to the atmospheric light or sky region, as a result, the dehazed image looks dark. In this paper, we explore the DCP from a new perspective and reformulate it into contrast, saturation and brightness. We proposed a method to estimate the transmission without computing the dark channel. To overcome the problem of over-enhancement and remove the haze effect, a nonlinear model based on inverse strategy is introduced. It prevents the transmission from becoming over-estimated or under-estimated. The experimental result section demonstrates the efficacy of the proposed method over the natural and synthetic hazy images along with qualitative and quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition, pp. 779–788 (2016)

  2. Gupta, N., Jalal, A.S.: Traditional to transfer learning progression on scene text detection and recognition: a survey. Artif. Intell. Rev. 55, 3457–3502 (2022). https://doi.org/10.1007/s10462-021-10091-3

    Article  Google Scholar 

  3. Li, D., Zhang, Z., Yu, K., Huang, K., Tan, T.: ISEE: an intelligent scene exploration and evaluation platform for large-scale visual surveillance. IEEE Trans. Parallel Distrib. Syst. 30(12), 2743–2758 (2019). https://doi.org/10.1109/TPDS.2019.2921956

    Article  Google Scholar 

  4. Woodell, G., Jobson, D.J., Rahman, Z., Hines, G.: Advanced image processing of aerial imagery. Proc. SPIE 6246, 1–12 (2006)

    Google Scholar 

  5. Garg, H., Agrawal, A.: A comparative study on vehicles safety systems. In: 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 172–176 (2020). https://doi.org/10.1109/PDGC50313.2020.9315786

  6. Singh, D., Kumar, V.A.: Comprehensive review of computational dehazing techniques. Arch. Comput. Methods Eng. 26, 1395–1413 (2019). https://doi.org/10.1007/s11831-018-9294-z

    Article  Google Scholar 

  7. Galdran, A.: Image dehazing by artificial multiple-exposure image fusion. Signal Process. 149, 135–147 (2018)

    Article  Google Scholar 

  8. Wang, J., Lu, K., Xue, J., He, N., Shao, L.: Single image dehazing based on the physical model and MSRCR algorithm. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2190–2199 (2018). https://doi.org/10.1109/TCSVT.2017.2728822

    Article  Google Scholar 

  9. Gupta, N., Garg, H., Agarwal, R.: A robust framework for glaucoma detection using CLAHE and EfficientNet. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02114-5

    Article  Google Scholar 

  10. Xin, L., He, Z., Yiu-Ming, C., Xinge, Y., Yuan, Y.T.: Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach. Comput. Vis. Image Understand. 162, 23–33 (2017)

    Article  Google Scholar 

  11. Liu, C., Zhao, J., Shen, Y., et al.: Texture filtering based physically plausible image dehazing. Vis Comput 32, 911–920 (2016). https://doi.org/10.1007/s00371-016-1259-3

    Article  Google Scholar 

  12. Wang, W., Yuan, X., Wu, X., Liu, Y.: Fast image dehazing method based on linear transformation. IEEE Trans. Multimed. 19(6), 1142–1155 (2017). https://doi.org/10.1109/TMM.2017.2652069

    Article  Google Scholar 

  13. Baig, N., Riaz, M.M., Ghafoor, A., Siddiqui, A.M.: Image dehazing using quadtree decomposition and entropy-based contextual regularization. IEEE Signal Process. Lett. 23(6), 853–857 (2016). https://doi.org/10.1109/LSP.2016.2559805

    Article  Google Scholar 

  14. Li, Z., Zheng, J.: Single image de-hazing using globally guided image filtering. IEEE Trans. Image Process. 27(1), 442–450 (2018). https://doi.org/10.1109/TIP.2017.2750418

    Article  MathSciNet  MATH  Google Scholar 

  15. Ju, M., Ding, C., Ren, W., Yang, Y., Zhang, D., Guo, Y.J.: IDE: image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans. Image Process. 30, 2180–2192 (2021). https://doi.org/10.1109/TIP.2021.3050643

    Article  Google Scholar 

  16. Mi, Z., Zhou, H., Zheng, Y., Wang, M.: Single image dehazing via multi-scale gradient domain contrast enhancement. IET Image Process 10(3), 206–214 (2016)

    Article  Google Scholar 

  17. Zheng, M., Qi, G., Zhu, Z., Li, Y., Wei, H., Liu, Y.: Image dehazing by an artificial image fusion method based on adaptive structure decomposition. IEEE Sensors J. 20(14), 8062–8072 (2020). https://doi.org/10.1109/JSEN.2020.2981719

    Article  Google Scholar 

  18. Yingying, Z., Gaoyang, T., Xiaoyan, Z., Jianmin, J., Qi, T.: Haze removal method for natural restoration of images with sky. Neurocomputing 275, 499–510 (2018)

    Article  Google Scholar 

  19. Yin, G., Yijing, S., Qiming, L., Hongyun, L., Jun, L.: Single image dehazing via self-constructing image fusion. Signal Process 167, 107284 (2020)

    Article  Google Scholar 

  20. Agrawal, S.C., Jalal, A.S.: A joint cumulative distribution function and gradient fusion-based method for dehazing of long shot hazy images. J. Vis. Commun. Image Represent. 77, 103087 (2021)

    Article  Google Scholar 

  21. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  22. Dilbag, S., Vijay, K.: Image dehazing using Moore neighborhood-based gradient profile prior. Signal Process. Image Commun. 70, 131–144 (2019)

    Article  Google Scholar 

  23. Bui, T.M., Kim, W.: Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 27(2), 999–1009 (2018). https://doi.org/10.1109/TIP.2017.2771158

    Article  MathSciNet  MATH  Google Scholar 

  24. Ju, M., Ding, C., Guo, Y.J., Zhang, D.: IDGCP: image dehazing based on gamma correction prior. IEEE Trans. Image Process. 29, 3104–3118 (2020). https://doi.org/10.1109/TIP.2019.2957852

    Article  MATH  Google Scholar 

  25. Mandal, S., Rajagopalan, A.N.: Local proximity for enhanced visibility in haze. IEEE Trans. Image Process. 29, 2478–2491 (2020)

    Article  MATH  Google Scholar 

  26. Yuan, F., Huang, H.: Image haze removal via reference retrieval and scene prior. IEEE Trans. Image Process. 27(9), 4395–4409 (2018). https://doi.org/10.1109/TIP.2018.2837900

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, P., Horng, S., Lin, J., Li, T.: Contrast in haze removal: configurable contrast enhancement model based on dark channel prior. IEEE Trans. Image Process. 28(5), 2212–2227 (2019). https://doi.org/10.1109/TIP.2018.2823424

    Article  MathSciNet  Google Scholar 

  28. Bi, G., Ren, J., Fu, T., Nie, T., Chen, C., Zhang, N.: Image dehazing based on accurate estimation of transmission in the atmospheric scattering model. IEEE Photon. J. 9(4), 1–18 (2017). https://doi.org/10.1109/JPHOT.2017.2726107

    Article  Google Scholar 

  29. Zhu, M., He, B., Wu, Q.: Single image dehazing based on dark channel prior and energy minimization. IEEE Signal Process. Lett. 25(2), 174–178 (2018). https://doi.org/10.1109/LSP.2017.2780886

    Article  Google Scholar 

  30. Lu, Z., Long, B., Yang, S.: Saturation based iterative approach for single image dehazing. IEEE Signal Process. Lett. 27, 665–669 (2020). https://doi.org/10.1109/LSP.2020.2985570

    Article  Google Scholar 

  31. Zhu, Q., Mai, J., Shao, L., et al.: A fast single image haze removal algorithm using color attenuation prior. TIP 24(11), 3522–3533 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Agrawal, S.C., Jalal, A.S.: Distortion-free image dehazing by superpixels and ensemble neural network. Vis. Comput. 38, 781–796 (2022). https://doi.org/10.1007/s00371-020-02049-3

    Article  Google Scholar 

  33. Rathor, S., Jadon, R.S.: Acoustic domain classification and recognition through ensemble based multilevel classification. J Ambient Intell Human. Comput. 10, 3617–3627 (2019). https://doi.org/10.1007/s12652-018-1087-6

    Article  Google Scholar 

  34. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: ECCV (2016)

  35. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)

  36. He, Z., Vishal, M.P.: Densely connected pyramid dehazing network. In: CVPR, pp. 3194–3203 (2018)

  37. Santra, S., Mondal, R., Chanda, B.: Learning a patch quality comparator for single image dehazing. IEEE Trans. Image Process. 27(9), 4598–4607 (2018). https://doi.org/10.1109/TIP.2018.2841198

    Article  MathSciNet  Google Scholar 

  38. Liu, Z., Xiao, B., Alrabeiah, M., Wang, K., Chen, J.: Single image dehazing with a generic model-agnostic convolutional neural network. IEEE Signal Process. Lett. 26(6), 833–837 (2019)

    Article  Google Scholar 

  39. Dong, Y., Jian, S.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: ECCV, pp. 702–717 (2018)

  40. Li, L., Dong, Y., Ren, W., Pan, J., Gao, C., Sang, N., Yang, M.H.: Semi-supervised image dehazing. IEEE Trans. Image Process. (2019). https://doi.org/10.1109/TIP.2019.2952690

    Article  MATH  Google Scholar 

  41. Golts, A., Freedman, D., Elad, M.: Unsupervised single image dehazing using dark channel prior loss. IEEE Trans. Image Process. 29, 2692–2701 (2020). https://doi.org/10.1109/TIP.2019.2952032

    Article  MATH  Google Scholar 

  42. Li, B., Gou, Y., Liu, J.Z., Zhu, H., Zhou, J.T., Peng, X.: Zero-shot image dehazing. IEEE Trans. Image Process. 29, 8457–8466 (2020). https://doi.org/10.1109/TIP.2020.3016134

    Article  MATH  Google Scholar 

  43. Chen, Z., Wang, Y., Yang, Y., Liu, D.: PSD: principled synthetic-to-real dehazing guided by physical priors. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7176–7185. https://doi.org/10.1109/CVPR46437.2021.00710

  44. Aditya, M., Harsh, S., Murari, M., Pratik, N.: Domain-aware unsupervised hyperspectral reconstruction for aerial image dehazing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 413–422 (2021)

  45. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.-H.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018)

  46. Engin, D., Genc, A., Ekenel, H.K.: Cycle-dehaze: enhanced CycleGAN for single image dehazing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, pp. 938–9388 (2018). https://doi.org/10.1109/CVPRW.2018.00127

  47. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  48. Hautiere, N., Tarel, J.P., Aubert, D., Dumont, E.: Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. J. 27(2), 87–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Berman, D., Treibitz, T., Avidan, S.: Single image dehazing using haze-lines. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 720–734 (2020). https://doi.org/10.1109/TPAMI.2018.2882478

    Article  Google Scholar 

  50. Agrawal, S.C., Jalal, A.S.: Dense haze removal by nonlinear transformation. IEEE Trans. Circuits Syst. Video Technol. 32(2), 593–607 (2022). https://doi.org/10.1109/TCSVT.2021.3068625

    Article  Google Scholar 

  51. Raikwar, S.C., Tapaswi, S.: Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Trans. Image Process. 29, 4832–4847 (2020). https://doi.org/10.1109/TIP.2020.2975909

    Article  MATH  Google Scholar 

  52. Dhara, S.K., Roy, M., Sen, D., Biswas, P.K.: Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing. IEEE Trans. Circuits Syst. Video Technol. (2020). https://doi.org/10.1109/TCSVT.2020.3007850

    Article  Google Scholar 

  53. Ma, K., Liu, W., Wang, Z.: Perceptual evaluation of single image dehazing algorithms. In: 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, pp. 3600–3604 (2015). https://doi.org/10.1109/ICIP.2015.7351475

  54. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2019). https://doi.org/10.1109/TIP.2018.2867951

    Article  MathSciNet  MATH  Google Scholar 

  55. Ancuti, C., Ancuti, C.O., De Vleeschouwer, C.: D-HAZY: a dataset to evaluate quantitatively dehazing algorithms. In: 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, pp. 2226–2230 (2016). https://doi.org/10.1109/ICIP.2016.7532754

  56. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans. Image Process. 24(11), 3888–3901 (2015). https://doi.org/10.1109/TIP.2015.2456502

    Article  MathSciNet  MATH  Google Scholar 

  57. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013). https://doi.org/10.1109/LSP.2012.2227726

    Article  Google Scholar 

  58. Moorthy, A., Bovik, A.: A modular framework for constructing blind universal quality indices. IEEE Signal Process. Lett. 17, 7 (2009)

    Google Scholar 

  59. Crete-Roffet, F., Dolmiere, T., Ladret, P., Nicolas, M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: SPIE (2007)

  60. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012). https://doi.org/10.1109/TIP.2012.2191563

    Article  MathSciNet  MATH  Google Scholar 

  62. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Xu, Z., et al.: Strong baseline for single image dehazing with deep features and instance normalization. In: BMVC (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chand Agrawal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S.C., Agarwal, R. A novel contrast and saturation prior for image dehazing. Vis Comput 39, 5763–5781 (2023). https://doi.org/10.1007/s00371-022-02694-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02694-w

Keywords

Navigation