Skip to main content
Log in

Ultrasound images speckle noise removal by nonconvex hybrid overlapping group sparsity model

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a novel hybrid variational model is proposed for speckle noise removal. This model contains the regularization term combined the nonconvex high-order total variation (HOTV) and overlapping group sparse total variation (OGSTV) and the data fidelity term depicted by a generalized Kullback–Leibler divergence. The proposed model inherits the advantages of nonconvex HOTV regularization and overlapping group sparse regularization and can more effectively preserve the edges and simultaneously eliminate staircase artifacts. Under the framework of alternating direction method of multipliers, we develop an efficient alternating minimization algorithm by using iteratively re-weighted \(\ell _1\) algorithm, majorization–minimization algorithm, and Newton iteration algorithm to solve the corresponding iterative scheme. Numerical experiments show that the proposed model performs better in comparison with some state-of-the-art models in visual quality and certain image quality measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Afonso, M., Miguel, S.J.: Image reconstruction under multiplicative speckle noise using total variation. Neurocomputing 150, 200–213 (2015). https://doi.org/10.1016/j.neucom.2014.08.073

    Article  Google Scholar 

  2. Hou, B., Zhang, X., Bu, X., Feng, H.: SAR image despeckling based on nonsubsampled shearlet transform. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 5(3), 809–823 (2012). https://doi.org/10.1109/JSTARS.2012.2196680

    Article  Google Scholar 

  3. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal sar image denoising algorithm based on llmmse wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50(2), 606–616 (2012). https://doi.org/10.1109/TGRS.2011.2161586

    Article  Google Scholar 

  4. R\(\rm {\ddot{o}}\)hlig, M., Schmidt, C., Prakasam, R.K., Schumann, H., Stachs, O.,: Visual analysis of retinal changes with optical coherence tomography. Vis. Comput. 34(1), 1209–1224 (2018). https://doi.org/10.1007/s00371-018-1486-x

  5. Krissian, K., Kikinis, R., Westin, C.F. Vosburgh, K.G.: Speckle-Constrained Filtering of Ultrasound Images. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). 547–552 (2005). https://doi.org/10.1109/CVPR.2005.331

  6. Choi, H., Jeong, J.: Speckle noise reduction for ultrasound images by using speckle reducing anisotropic diffusion and Bayes threshold. J. X-Ray Sci. Technol. 27, 885–898 (2019). https://doi.org/10.3233/XST-190515

    Article  Google Scholar 

  7. Li, G., Li, C.H., Zhu, Y.P., Huang, F.J.: An improved speckle-reduction algorithm for SAR images based on anisotropic diffusion. Multimed. Tools Appl. 76, 17615–17632 (2017). https://doi.org/10.1007/s11042-015-2810-3

    Article  Google Scholar 

  8. Arias, P., Morel, J.M.: Kalman Filtering of Patches for Frame-Recursive Video Denoising. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 79, 1917–1926 (2019). https://doi.org/10.1109/CVPRW.2019.00243

  9. Gavaskar, R.G., Chaudhury, K.N.: Fast adaptive bilateral filtering. IEEE Trans. Image Process. 28, 779–790 (2019). https://doi.org/10.1109/TIP.2018.2871597

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, B.H., Tseng, Y.S., Yin, J.L.: Gaussian-adaptive bilateral filter. IEEE Signal Proc. Let. 27, 1670–1674 (2020). https://doi.org/10.1109/LSP.2020.3024990

    Article  Google Scholar 

  11. Chen, B.H., Cheng, H.Y., Tseng, Y.S., Yin, J.L.: Two-pass bilateral smooth filtering for remote sensing imagery. IEEE Geosci. Remote Sens. Let. 19, 1–5 (2022). https://doi.org/10.1109/LGRS.2020.3048488

    Article  Google Scholar 

  12. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007). https://doi.org/10.1109/tip.2007.901238

    Article  MathSciNet  Google Scholar 

  13. Huang, J., Yang, X.: Fast reduction of speckle noise in real ultrasound images. Signal Process. 93, 684–694 (2013). https://doi.org/10.1016/j.sigpro.2012.09.005

    Article  Google Scholar 

  14. Huang, Y.M., Ng, M.K., Wen, Y.W.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009). https://doi.org/10.1137/080712593

    Article  MathSciNet  MATH  Google Scholar 

  15. Ji, T.Y., Huang, T.Z., Zhao, X.L., Ma, T.H., Deng, L.J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017). https://doi.org/10.1016/j.apm.2017.04.002

    Article  MathSciNet  MATH  Google Scholar 

  16. Kwak, Y., Song, W.J., Kim, S.E.: Speckle-noise-invariant convolutional neural network for SAR target recognition. IEEE Geosci. Remote S. 16, 549–553 (2019). https://doi.org/10.1109/LGRS.2018.2877599

    Article  Google Scholar 

  17. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. on Image Process. 7, 3142–3155 (2017). https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  18. Rudin, L.I., Lions, P.L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. Geometric Level Set Methods in Imaging, Vision, and Graphics. 103–119 (2003)

  19. Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39, 62–74 (2011). https://doi.org/10.1007/s10851-010-0225-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Mei, J.J., Huang, T.Z., Wang, S., Zhao, X.L.: Second order total generalized variation for speckle reduction in ultrasound images. J. Frankl. Inst. 355(4), 574–595 (2018). https://doi.org/10.1016/j.jfranklin.2017.10.035

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, X.W.: Total generalized variation and wavelet frame-based adaptive image restoration algorithm. Vis. Comput. 35, 1883–1894 (2019). https://doi.org/10.1007/s00371-018-1581-z

    Article  Google Scholar 

  22. Lv, Y.H.: Total generalized variation denoising of speckled images using a primal-dual algorithm. J. Appl. Math. Comput. 62(1), 489–509 (2020). https://doi.org/10.1007/s12190-019-01293-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, J., Huang, T.Z., Liu, G., Wang, S., Lv, X.G.: Total variation with overlapping group sparsity for speckle noise reduction. Neurocomputing 216, 502–513 (2016). https://doi.org/10.1016/j.neucom.2016.07.049

    Article  Google Scholar 

  24. Wang, S., Huang, T.Z., Zhao, X.L., Mei, J.J., Huang, J.: Speckle noise removal in ultrasound images by first- and second-order total variation. Numer. Algorithms 78(2), 513–533 (2018). https://doi.org/10.1007/s11075-017-0386-x

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, Y., Feng, X.C., Baciu, G., Wang, W.: Nonconvex sparse regularizer based speckle noise removal. Pattern Recognit. 46, 989–1001 (2013). https://doi.org/10.1016/j.patcog.2012.10.010

    Article  Google Scholar 

  26. Li, C.Y., Ren, Z.M., Tang, L.M.: Multiplicative noise removal via using nonconvex regularizers based on total variation and wavelet frame. J. Comput. Appl. Math. 370, 112684 (2020). https://doi.org/10.1016/j.cam.2019.112684

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, T.T., Ng, M.K., Zhao, X.L.: Sparsity reconstruction using nonconvex TGpV-shearlet regularization and constrained projection. Appl. Math. Comput. 410, 126170 (2021). https://doi.org/10.1016/j.amc.2021.126170

    Article  MathSciNet  MATH  Google Scholar 

  28. Tang, L.M., Ren, Y.J., Fang, Z., He, C.J.: A generalized hybrid nonconvex variational regularization model for staircase reduction in image restoration. Neurocomputing 359, 15–31 (2019). https://doi.org/10.1016/j.neucom.2019.05.073

    Article  Google Scholar 

  29. Liu, X.W.: Adaptive regularization parameter for nonconvex TGV based image restoration. Signal Process. 188, 108247 (2021). https://doi.org/10.1016/j.sigpro.2021.108247

    Article  Google Scholar 

  30. Liu, G., Huang, T.Z., Liu, J., Lv, X.G.: Total variation with overlapping group sparsity for image deblurring under impulse noise. PLoS ONE 10, e0122562 (2015). https://doi.org/10.1371/journal.pone.0122562

    Article  Google Scholar 

  31. Qin, L., Lin, Z.C., She, Y.Y., Zhang, C.: A comparison of typical \(\ell _p\) minimization algorithms. Neurocomputing 119, 413–424 (2013). https://doi.org/10.1016/j.neucom.2013.03.017

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Project of Shandong Province Higher Educational Science and Technology Program (J17KA166), by the Major Program of the National Natural Science Foundation of China (11991024), by the National Natural Science Foundation of China (61976126), by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China (2019KJI005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binbin Hao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wei, J. & Hao, B. Ultrasound images speckle noise removal by nonconvex hybrid overlapping group sparsity model. Vis Comput 39, 4787–4799 (2023). https://doi.org/10.1007/s00371-022-02627-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02627-7

Keywords

Navigation