Skip to main content
Log in

Liver segmentation based on complementary features U-Net

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Automatic segmentation of the liver in abdominal CT images is critical for guiding liver cancer biopsies and treatment planning. Yet, automatic segmentation of CT liver images remains challenging due to the poor contrast between the liver and surrounding organs in abdominal CT images. In this paper, we propose a novel network for liver segmentation, and the network is essentially a U-shaped network with an encoder–decoder structure. Firstly, the complementary feature enhancement unit is designed in the network to mitigate the semantic gap between encoder and decoder. The complementary feature enhancement unit is based on subtraction, which enhances the complementary features between encoder and decoder. Secondly, this paper proposes a new cross attention model that no longer generates value by convolution, which reduces redundant information and enhances the contextual information of single sparse attention by encoding contextual information by \(3\times 3\) convolution. The dice score, accuracy, and precision of our network on the LiTS dataset were 95.85\(\%\), 97.19\(\%\), and 97.11\(\%\), and the dice score, accuracy, and precision on the dataset consisted of 3Dircadb and CHAOS were 93.65\(\%\), 94.38\(\%\), and 97.53\(\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sung, H., Ferlay, J., Jacques, S., Rebecca, L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci. 9351(2015), 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  3. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2014)

    Google Scholar 

  4. Han, X.: Automatic liver lesion segmentation using a deep convolutional neural network method. Preprint at arXiv:1704.07239

  5. Li, X.M., Chen, H., Qi, X.J., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  7. Huang, G., Liu, Z., van der Maten, L., Weinberger, KQ.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261–2269 (2017)

  8. Oktay, O., Schlemper, J., Folgoc, LL., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, NY., Kainz, B. et al.: Attention U-Net: learning where to look for the pancreas. Preprint at arXiv:1804.03999

  9. Pan, G., Zheng, Y.X., Guo, S., Lv, Y.Z.: Automatic sewer pipe defect semantic segmentation based on improved U-Net. Autom. Constr. 119, 103383 (2020)

    Article  Google Scholar 

  10. Zhao, X., Zhang, P., Song, F., Fan, G., Sun, Y., Wang, Y., Tian, Z., Zhang, L., Zhang, G.: D2A U-Net: automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution. Comput. Biol. Med. 135, 104526 (2021)

    Article  Google Scholar 

  11. Chen, S., Zou, Y., Liu, P.X.: IBA-U-Net: attentive BConvLSTM U-Net with redesigned inception for medical image segmentation. Comput. Biol. Med. 135, 104551 (2021)

    Article  Google Scholar 

  12. Yang, J., Qiu, K.: An improved segmentation algorithm of CT image based on U-Net network and attention mechanism. Multimed Tools Appl. (2021). https://doi.org/10.1007/s11042-021-10841-z

  13. Hyunseok, S., Charles, H., Maxime, B., Ruoxiu, X., Lei, X.: Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. Preprint at arXiv:1911.00140

  14. Zhou, Z., Siddiquee, M.R., Tajbakhsh, N., Liang, J.: Unet++: a nested U-Net architecture for medical image segmentation. CoRR (2018) arXiv:1807.10165

  15. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  16. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. Preprint at arXiv:1412.7062

  17. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. (2016) arXiv:1606.00915

  18. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. (2017) arXiv:1706.05587

  19. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision-ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol. 11211. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_4920

    Chapter  Google Scholar 

  20. Li, H.C., Xiong, P.F., Jie, A., Wang, L.X.: Pyramid attention network for semantic segmentation. Preprint at arXiv:1805.10180

  21. Gu, F., Burlutskiy, N., Andersson, M., Wilen, L.K.: Multi-resolution networks for semantic segmentation in whole slide images. Preprint at arXiv:1807.09607v1

  22. Hiroki, T., Yuki, T., Akihiko, Y., Ryoma, B.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12597–12606 (2019)

  23. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

  24. Huang, Z.L., Wang, X.G., Huang, L.C., Huang, C., Wei, Y.C., Liu W.Y.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 603–612 (2019)

  25. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

  26. Zhu, Z., Xu, M.D., Bai, S., Huang, T.T., Bai X.: Asymmetric non-local neural networks for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 593–602 (2019)

  27. Bilic, P., Christ, P.F., Vorontsov, E., Chlebus, G., Chen, H., et al.: The liver tumor segmentation benchmark (LiTS). arXiv:1901.04056

  28. Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol. 9901. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_48

    Chapter  Google Scholar 

  29. Kavur, A.E., Gezer, N.S., Aslan, S., Conze, P.H., Groza, V., Pham, D.D., Chatterjee, S., Ernst, P., Han, S., Rajan, R., et al.: CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)

    Article  Google Scholar 

  30. Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  31. Zhao, H.S., Shi, J.P., Qi, X.J., Wang, X.G., Jia, J.Y.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)

  32. Jha, D., Smedsrud, P.H., Riegler, M.A., Johansen, D., Lange, T., Halvorsen, P.: ResUNet++: an advanced architecture for medical image segmentation. In:2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255 (2019) https://doi.org/10.1109/ISM46123.2019.00049

  33. Cai, K., Yang, R.Q., Li, L.H., Zhou, J., Ou, S.X., Feng, L.: A framework combining window width-level adjustment and Gaussian filter-based multi-resolution for automatic whole heart segmentation. Neurocomputing 220(12), 138–150 (2017)

    Article  Google Scholar 

  34. Woo, S., Park, J.C., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

  35. Li, X., Wang, W.H., Hu, X.L., Jian, Y.: Selective Kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–519 (2019)

  36. Gu, Z.W., Cheng, J., Fu, H.Z., Zhou, K., Hao, H.Y., Zhao, Y.T., Zhang, T.Y., Gao, S.H., Liu, J.: Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  37. Liu, Z., Han, K., Wang, Z., et al.: Automatic liver segmentation from abdominal CT volumes using improved convolution neural networks. Multimed. Syst. 27, 111–124 (2021)

    Article  Google Scholar 

  38. Fan, T., Wang, G., Wang, X., et al.: MSN-Net: a multi-scale context nested U-Net for liver segmentation. SIViP 15, 1089–1097 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Science and Technology Program of Henan Province(212102310084)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Hui, Z., Tang, C. et al. Liver segmentation based on complementary features U-Net. Vis Comput 39, 4685–4696 (2023). https://doi.org/10.1007/s00371-022-02617-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02617-9

Keywords

Navigation