Skip to main content
Log in

Bio-inspired feature cascade network for edge detection

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Edge detection is a key step in various image processing tasks. Edge detection based on deep learning is usually composed of encoding and decoding networks. Encoding networks are usually built based on classifiers (e.g., VGG16) while focusing on the construction of decoding networks. In this paper, an encoding–decoding network is proposed by simulating the visual pathway of the retina-lateral geniculate nucleus (LGN)- the primary visual cortex (V1)-V2-V4- the inferior temporal cortex. Bio-inspired Feature Cascade Network (BFCN) was designed to simulate the transmission modes of feedforward propagation, horizontal connection, and feedback propagation among neurons in the IT, which is conducive to enhancing the characteristic analysis ability of the decoding network. Firstly, to simulate the information processing model of feedforward propagation, a Feedforward Propagation Network is designed to fully fuse the underlying information. Secondly, to simulate the information processing model of the horizontal connection between neurons, the Inter-Layer Information module (ILI) is designed to process the interlayer information of FPNet, which is beneficial to enhancing the feature extraction ability. Finally, to simulate the feedback propagation, the Proximity Combination Network (PCNet) is designed to integrate the feature prediction of each stage and strengthen the generalization ability of the network. Experimental results show that the proposed contour detection model outperforms current similar models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chapelle, O., Haffner, P.: SVMs for histogram-based image classification. IEEE Trans. Neural Netw. 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  2. A. Bosch, A. Zisserman, and X. Munoz "Image classification using random forests and ferns." In: 2007 IEEE 11th International Conference On Computer Vision, pp.1-8: Iee (2007)

  3. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. CVPR 1(1), 511–518 (2001)

    Google Scholar 

  4. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)

    Article  Google Scholar 

  5. H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation." In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1520–1528 (2015)

  6. P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár "Learning to refine object segments." In: International Journal of Computer Vision, pp. 75–91. Springer (2016)

  7. S. Xie and Z. Tu, "Holistically-nested edge detection." In: International Comference on Computer Vision, pp. 1395–1403 (2015)

  8. Y. Wang, X. Zhao, and K. Huang, "Deep crisp boundaries." In IEEE Conference on Computer Vision and Pattern Recognition, pp. 3892–3900 (2017)

  9. Cao, Y.-J., Lin, C., Li, Y.-J.: Learning crisp boundaries using deep refinement network and adaptive weighting loss. IEEE Trans. Multimed. 5(99), 1–1 (2020)

    Google Scholar 

  10. Desimone, R., Schein, S.J., Moran, J., Ungerleider, L.G.: Contour, color and shape analysis beyond the striate cortex. Vision. Res. 25(3), 441–452 (1985)

    Article  Google Scholar 

  11. Prewitt, J.M.: Object enhancement and extraction. Pict. Process. Psychopictorics 10(1), 15–19 (1970)

    Google Scholar 

  12. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. IEEE Trans. Autom. Control 19(4), 462–463 (2003)

    Google Scholar 

  13. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  14. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. London. B Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  15. Zeng, C., Li, Y., Li, C.: Center–surround interaction with adaptive inhibition: A computational model for contour detection. Neuroimage 55(1), 49–66 (2011)

    Article  Google Scholar 

  16. Yang, K.-F., Li, C.-Y., Li, Y.-J.: Multifeature-based surround inhibition improves contour detection in natural images. IEEE Trans. Image Process. 23(12), 5020–5032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. K.-F. Yang, S.-B. Gao, and Y.-J. Li, "Efficient illuminant estimation for color constancy using grey pixels." In: CVPR, pp. 2254–2263 (2015)

  18. Yang, K.F., Gao, S.B., Guo, C.F., Li, C.Y., Li, Y.J.: Boundary detection using double-opponency and spatial sparseness constraint. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 24(8), 2565 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  20. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  21. K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition." Computer Science, pp. 1409–1566 (2014)

  22. Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, "Richer convolutional features for edge detection." In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5872–5881 (2017)

  23. X. S. Poma, E. Riba, and A. D. Sappa, "Dense extreme inception network: towards a robust CNN model for edge detection." (2019)

  24. D. Xu, W. Ouyang, X. Alameda-Pineda, E. Ricci, X. Wang, and N. Sebe, "Learning deep structured multi-scale features using Attention-Gated CRFs for contour prediction." In: Presented at the Proceedings of the 31st International Conference on Neural Information Processing Systems, pp, 3964–3973, (2017)

  25. Lin, C., Cui, L., Li, F., Cao, Y.: Lateral refinement network for contour detection. Neurocomputing 409, 304–312 (2020)

    Article  Google Scholar 

  26. R. Deng and S. Liu, "Deep structural contour detection," In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 304–312 (2020)

  27. R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu, "Learning to predict crisp boundaries." In: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 562-578, (2018)

  28. R. Deng, S. Liu, J. Wang, H. Wang, H. Zhao, and X. Zhang, "Learning to decode contextual information for efficient contour detection." In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4435–4443 (2021)

  29. L. Gao, Z. Zhou, H. T. Shen, and J. Song, "Bottom-up and top-down: bidirectional additive net for edge detection." In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 594–600 (2021)

  30. Liu, Y., Cheng, M.-M., Fan, D.-P., Zhang, L., Bian, J.-W., Tao, D.: Semantic edge detection with diverse deep supervision. Int. J. Comput. Vis. 130(1), 179–198 (2022)

    Article  Google Scholar 

  31. Y. Liu, J. Yao, L. Li, X. Lu, and J. Han, "Learning to refine object contours with a top-down fully convolutional encoder-decoder network." arXiv preprint arXiv:1705.04456, (2017)

  32. J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang, "Bi-directional cascade network for perceptual edge detection." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3828–3837 (2019)

  33. Hu, X., Yun, L., Kai, W., Bo, R.: Learning hybrid convolutional features for edge detection. Neurocomputing 313, 377–385 (2018)

    Article  Google Scholar 

  34. Huan, L., Xue, N., Zheng, X., He, W., Xia, G.S.: Unmixing convolutional features for crisp edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1–1 (2021)

    Google Scholar 

  35. Zhang, R., You, M.: Fast contour detection with supervised attention learning. J Real-Time Image Process. 18(3), 647–657 (2021)

    Article  Google Scholar 

  36. Tang, Q., Sang, N., Liu, H.: Learning nonclassical receptive field modulation for contour detection. IEEE Trans. Image Process. PP(99), 1–1 (2019)

    MATH  Google Scholar 

  37. Engel, S.A., et al.: fMRI of human visual cortex. Nature 369(6481), 525–525 (1994)

    Article  Google Scholar 

  38. Grobstein, P.: David J. Ingle Melvyn A. Goodale Richard J.W. mansfield analysis of visual behavior 1982 MIT press cambridge, MA and london 834. Anim. Behav. 31(2), 621–622 (1983)

    Article  Google Scholar 

  39. E. Kandel and J. Schwartz, Principles of neural science / 5th ed. Principles of neural science / 5th ed, (2013)

  40. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor segmentation and support inference from rgbd images." In: International Journal of Computer Vision, pp. 746–760, Springer, (2012)

  41. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 2117–2125 (2017)

    Google Scholar 

  42. K. Yang, S. Gao, C. Li, and Y. Li, "Efficient color boundary detection with color-opponent mechanisms." In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2810-2817 (2013)

  43. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. PAMI 37(8), 1558–1570 (2015)

    Article  Google Scholar 

  44. I. Kokkinos, "Pushing the boundaries of boundary detection using deep learning." arXiv preprint arXiv:1511.07386, (2015)

  45. S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, "Learning rich features from RGB-D images for object detection and segmentation." In: European conference on computer vision, 2014, pp. 345–360 Springer, (2014)

  46. S. Hallman and C. C. Fowlkes, "Oriented edge forests for boundary detection." In: CVPR, pp. 1732–1740 (2015)

  47. I. Kokkinos, "Pushing the boundaries of boundary detection using deep learning." In: International Conference on Representation Learning, (2016)

  48. J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang, "Bi-directional cascade network for perceptual edge detection." In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020)

  49. S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, "Learning rich features from RGB-D images for object detection and segmentation." In: International Journal of Computer Vision, pp. 345–360 Springer, (2014)

  50. W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, "Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection." In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2015)

  51. G. Bertasius, J. Shi, and L. Torresani, "Deepedge: A multi-scale bifurcated deep network for top-down contour detection," In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4380–4389 (2015)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61866002), Guangxi Natural Science Foundation (Grant No.2020GXNSFDA297006, Grant No. 2018GXNSFAA138122, Grant No. 2015GXNSFAA139293), and Innovation Project of Guangxi University of Science and Technology Graduate Education (Grant No. GKYC202005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Lin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Wang, R. & Lin, C. Bio-inspired feature cascade network for edge detection. Vis Comput 39, 4149–4164 (2023). https://doi.org/10.1007/s00371-022-02581-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02581-4

Keywords

Navigation