Skip to main content
Log in

Planar \({G^{3}}\) Hermite interpolation by quintic Bézier curves

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

To achieve \(G^3\) Hermite interpolation with a lower degree curve, this paper studies planar \(G^3\) Hermite interpolation using a quintic Bézier curve. First, the first and second derivatives of the quintic Bézier curve satisfying \(G^2\) condition are constructed according to the interpolation conditions. Four parameters are introduced into the construction. Two of them are set as free design parameters, which represent the tangent vector module length of the quintic Bézier curve at the two endpoints, and the other two parameters are derived from \(G^3\) condition. Then, to match \(G^3\) condition, it is necessary to ensure that the first derivative of curvature with respect to arc length is equal. Nevertheless, the direct calculation of the derivative of curvature involves the calculation of square root. Alternatively, an equivalent condition is derived by investigating the first derivative of curvature square. Based on this condition, the two parameters can be computed as the solutions of linear systems. Finally, the control points of the quintic Bézier curve are obtained. Several comparative examples are provided to demonstrate the effectiveness of the proposed method. A variety of complex shape curves can be obtained by adjusting the two free design parameters. Applications to shape design are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farin, G.E., Farin, G.: Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann (2002)

  2. Wu, W., Yang, X.: Geometric Hermite interpolation by a family of intrinsically defined planar curves. Comput.-Aided Des. 77, 86–97 (2016)

    Article  Google Scholar 

  3. Yang, X.: Geometric interpolation by ph curves with quadratic or quartic rational normals. Computer-Aided Design 114, 112–121 (2019)

    Article  Google Scholar 

  4. Wang, W., Qin, K.: Existence and computation of spherical rational quartic curves for hermite interpolation. The Visual Computer 16, 187–196 (2000)

    Article  Google Scholar 

  5. De Boor, C., Höllig, K., Sabin, M.: High accuracy geometric hermite interpolation. Computer Aided Geometric Design 4(4), 269–278 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Höllig, K., Koch, J.: Geometric hermite interpolation. Computer Aided Geometric Design 12(6), 567–580 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Höllig, K., Koch, J.: Geometric hermite interpolation with maximal order and smoothness. Computer Aided Geometric Design 13(8), 681–695 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Reif, U.: On the local existence of the quadratic geometric hermite interpolant. Computer Aided Geometric Design 16(3), 217–221 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schaback, R.: Optimal geometric hermite interpolation of curves. Math. Methods Curves Surf. I I, 1–12 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Xu, L., Shi, J.: Geometric hermite interpolation for space curves. Comput. Aided Geom. Des. 18(9), 817–829 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meek, D.S., Walton, D.: Geometric hermite interpolation with tschirnhausen cubics. Journal of Computational and Applied Mathematics 81(2), 299–309 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meek, D.S., Walton, D.J.: Hermite interpolation with tschirnhausen cubic spirals. Comput. Aided Geom. Des. 14(7), 619–635 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yong, J.-H., Cheng, F.F.: Geometric hermite curves with minimum strain energy. Computer Aided Geometric Design 21(3), 281–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, L.: Planar quintic g2 hermite interpolation with minimum strain energy. Journal of Computational and Applied Mathematics 274, 109–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krajnc, M.: Geometric hermite interpolation by cubic g1 splines. Nonlinear Analysis: Theory, Methods&Applications 70(7), 2614–2626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farin, G.: Geometric hermite interpolation with circular precision. Computer-Aided Design 40(4), 476–479 (2008)

    Article  Google Scholar 

  17. Femiani, J.C., Chuang, C.-Y., Razdan, A.: Least eccentric ellipses for geometric hermite interpolation. Computer Aided Geometric Design 29(2), 141–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaklič, G., Žagar, E.: Planar cubic g1 interpolatory splines with small strain energy. J. Comput. Appl. Math. 235(8), 2758–2765 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meek, D.S., Saito, T., Walton, D.J., Yoshida, N.: Planar two-point g1 Hermite interpolating log-aesthetic spirals. J. Comput. Appl. Math. 236(17), 4485–4493 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, C.Y.: Geometric hermite interpolation by monotone helical quintics. Comput. Aided Geom. Des. 27(9), 713–719 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, X.: Geometric hermite interpolation by logarithmic arc splines. Comput. Aided Geom. Des. 31(9), 701–711 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Juhász, I.: Cubic parametric curves of given tangent and curvature. Computer-Aided Design 30(1), 1–9 (1998)

    Article  Google Scholar 

  23. Lu, L., Jiang, C.,  Hu, Q.: Planar cubic G(1) and quintic G(2) Hermite interpolations via curvature variation minimization, COMPUTERS & GRAPHICS-UK 70 (SI) (2018) 92–98, Computer-Aided Design and Computer Graphics (CAD/GRAPHICS) Conference, Changsha, PEOPLES R CHINA, AUG 26-27, 2017. https://doi.org/10.1016/j.cag.2017.07.007

  24. Ziatdinov, R., Yoshida, N., Kim, T.-W.: Fitting g2 multispiral transition curve joining two straight lines. Computer-Aided Design 44(6), 591–596 (2012)

    Article  Google Scholar 

  25. Shi, F.: CAGD and NURBS, Higher Education Press, (2013)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51705469), the National Key Project (Grant No. GJXM92579) and the Key Scientific Research Projects of Colleges and Universities in Henan Province (Grant No. 19A460028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ning, T. & Shen, Y. Planar \({G^{3}}\) Hermite interpolation by quintic Bézier curves. Vis Comput 38, 4319–4328 (2022). https://doi.org/10.1007/s00371-021-02298-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02298-w

Keywords

Navigation