Skip to main content
Log in

Background subtraction for moving object detection: explorations of recent developments and challenges

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Background subtraction, although being a very well-established field, has required significant research efforts to tackle unsolved challenges and to accelerate the progress toward generalized moving object detection framework for real-time applications. The performance of subsequent steps in higher level video analytical tasks totally depends on the performance of background subtraction. Recent years have witnessed a remarkable performance of deep neural networks for background subtraction. The deep leaning has paved the way for improving background subtraction to counter the major challenges in this area. Also, the fusion of multiple features leads to the improvement of conventional background subtraction methods. In this context, we provide the comprehensive review of conventional as well as recent developments in background subtraction to analyze the success and current challenges in this field. Firstly, this paper introduces the overview of background subtraction process along with challenges and benchmark video datasets released for evaluation purpose. Then, we briefly summarize the background subtraction methods and report a comparison of the most promising state-of-the-art algorithms. Moreover, we comprehensively investigate some of the recent methods in order to find out how they have achieved their reported performances. Finally, we conclude with the shortcomings in the current developments and outline the promising research directions for background subtraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The datasets analyzed during the current study are available from the public data repository at the website of http://www.changedetection.net/

Code availability

Software application – BGSLibrary (https://github.com/andrewssobral/bgslibrary).

References

  1. del Postigo, C.G., Torres, J., Menéndez, J.M.: Vacant parking area estimation through background subtraction and transience map analysis. IET Intel. Transp. Syst. 9(9), 835–841 (2015)

    Article  Google Scholar 

  2. Muniruzzaman, S., Haque, N., Rahman, F., Siam, M., Musabbir, R., Hadiuzzaman, M., Hossain, S.: Deterministic algorithm for traffic detection in free-flow and congestion using video sensor. J. Built. Environ. Technol. Eng. 1, 111–130 (2016)

    Google Scholar 

  3. Penciuc, D., El Baf, F., Bouwmans, T.: Comparison of background subtraction methods for an interactive learning space. NETTIES 2006 (2006)

  4. Zhang, X., Tian, Y., Huang, T., Dong, S., Gao, W.: Optimizing the hierarchical prediction and coding in HEVC for surveillance and conference videos with background modeling. IEEE Trans. Image Process. 23(10), 4511–4526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansod, S.D., Nandedkar, A.V.: Crowd anomaly detection and localization using histogram of magnitude and momentum. Vis. Comput. 36(3), 609–620 (2020)

    Article  Google Scholar 

  6. Mukherjee, S., Gil, S., Ray, N.: Unique people count from monocular videos. Vis. Comput. 31(10), 1405–1417 (2015)

    Article  Google Scholar 

  7. Huang, H., Fang, X., Ye, Y., Zhang, S., Rosin, P.L.: Practical automatic background substitution for live video. Comput. Vis. Media 3(3), 273–284 (2017)

    Article  Google Scholar 

  8. Tamás, B.: Detecting and analyzing rowing motion in videos. In: BME Scientific Student Conference (pp. 1–29) (2016)

  9. Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  10. Huang, W., Zeng, Q., Chen, M.: Motion characteristics estimation of animals in video surveillance. In: Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1098–1102). IEEE (2017)

  11. Giraldo-Zuluaga, J. H., Salazar, A., Gomez, A., Diaz-Pulido, A.: Automatic recognition of mammal genera on camera-trap images using multi-layer robust principal component analysis and mixture neural networks (2017)

  12. Yang, Y., Yang, J., Liu, L., Wu, N.: High-speed target tracking system based on a hierarchical parallel vision processor and gray-level LBP algorithm. IEEE Trans Syst Man Cybern Syst 47(6), 950–964 (2016)

    Article  Google Scholar 

  13. Hadi, R.A., George, L.E., Mohammed, M.J.: A computationally economic novel approach for real-time moving multi-vehicle detection and tracking toward efficient traffic surveillance. Arab J Sci Eng 42(2), 817–831 (2017)

    Article  Google Scholar 

  14. Choudhury, S.K., Sa, P.K., Bakshi, S., Majhi, B.: An evaluation of background subtraction for object detection vis-a-vis mitigating challenging scenarios. IEEE Access 4, 6133–6150 (2016)

    Article  Google Scholar 

  15. Chapel, M.N., Bouwmans, T.: Moving objects detection with a moving camera: a comprehensive review. Comput. Sci. Rev. 38, 100310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11, 31–66 (2014)

    Article  MATH  Google Scholar 

  17. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Understand. 122, 4–21 (2014)

    Article  Google Scholar 

  18. Maddalena, L., Petrosino, A.: Background subtraction for moving object detection in RGBD data: A survey. J. Imag. 4(5), 71 (2018)

    Article  Google Scholar 

  19. Kalsotra, R., Arora, S.: A comprehensive survey of video datasets for background subtraction. IEEE Access 7, 59143–59171 (2019)

    Article  Google Scholar 

  20. Bouwmans, T., Silva, C., Marghes, C., Zitouni, M.S., Bhaskar, H., Frelicot, C.: On the role and the importance of features for background modeling and foreground detection. Comput. Sci. Rev. 28, 26–91 (2018)

    Article  MathSciNet  Google Scholar 

  21. Bouwmans, T., Javed, S., Sultana, M., Jung, S.K.: Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. Neural Netw. 117, 8–66 (2019)

    Article  Google Scholar 

  22. Bouwmans, T., Garcia-Garcia, B.: Background subtraction in real applications: challenges, current models and future directions (2019)

  23. Kim, H., Sakamoto, R., Kitahara, I., Toriyama, T., Kogure, K.: Robust foreground extraction technique using Gaussian family model and multiple thresholds. In: Asian Conference on Computer Vision (pp. 758–768). Springer, Berlin (2007).

  24. Allili, M. S., Bouguila, N., Ziou, D.: A robust video foreground segmentation by using generalized gaussian mixture modeling. In: Fourth Canadian Conference on Computer and Robot Vision (CRV'07) (pp. 503–509). IEEE (2007)

  25. Lin, H. H., Liu, T. L., Chuang, J. H.: A probabilistic SVM approach for background scene initialization. In: Proceedings of the International Conference on Image Processing (Vol. 3, pp. 893–896). IEEE (2002)

  26. Han, B., Davis, L.S.: Density-based multifeature background subtraction with support vector machine. IEEE Trans. Pattern Anal. Mach. Intel. 34(5), 1017–1023 (2011)

    Google Scholar 

  27. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  28. Maddalena, L., Petrosino, A.: Self-organizing background subtraction using color and depth data. Multimedia Tools Appl. 78(9), 11927–11948 (2019)

    Article  Google Scholar 

  29. Kim, W., Kim, C.: Background subtraction for dynamic texture scenes using fuzzy color histograms. IEEE Signal Process. Lett. 19(3), 127–130 (2012)

    Article  Google Scholar 

  30. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Barnich, O., Van Droogenbroeck, M.: ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image process. 20(6), 1709–1724 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 38–43). IEEE (2012)

  33. Braham, M., Van Droogenbroeck, M.: Deep background subtraction with scene-specific convolutional neural networks. In: Proceedings of the 2016 International Conference on Systems, Signals and Image Processing (IWSSIP) (pp. 1–4). IEEE (2016)

  34. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  35. Vaswani, N., Bouwmans, T., Javed, S., Narayanamurthy, P.: Robust subspace learning: robust PCA, robust subspace tracking, and robust subspace recovery. IEEE Signal Process. Mag. 35(4), 32–55 (2018)

    Article  Google Scholar 

  36. Bouwmans, T., Sobral, A., Javed, S., Jung, S.K., Zahzah, E.H.: Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 23, 1–71 (2017)

    Article  MATH  Google Scholar 

  37. Komagal, E., Yogameena, B.: Foreground segmentation with PTZ camera: a survey. Multimedia Tools Appl. 77(17), 22489–22542 (2018)

    Article  Google Scholar 

  38. Kim, W., Jung, C.: Illumination-invariant background subtraction: Comparative review, models, and prospects. IEEE Access 5, 8369–8384 (2017)

    Article  Google Scholar 

  39. Bouwmans, T., Maddalena, L., Petrosino, A.: Scene background initialization: A taxonomy. Pattern Recogn. Lett. 96, 3–11 (2017)

    Article  Google Scholar 

  40. Jodoin, P.M., Maddalena, L., Petrosino, A., Wang, Y.: Extensive benchmark and survey of modeling methods for scene background initialization. IEEE Trans. Image Process. 26(11), 5244–5256 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. El Baf, F., Bouwmans, T., Vachon, B.: A fuzzy approach for background subtraction. In: Proceedings of the 2008 15th IEEE International Conference on Image Processing (pp. 2648–2651). IEEE (2008)

  42. Lee, D. S.: Improved adaptive mixture learning for robust video background modeling. In: MVA (pp. 443–446) (2002)

  43. Pnevmatikakis, A., Polymenakos, L.: 2D person tracking using Kalman filtering and adaptive background learning in a feedback loop. In: Proceedings of the International Evaluation Workshop on Classification of Events, Activities and Relationships (pp. 151–160). Springer, Berlin (2006)

  44. Magee, D.R.: Tracking multiple vehicles using foreground, background and motion models. Image Vis. Comput. 22(2), 143–155 (2004)

    Article  Google Scholar 

  45. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proceedings of the Seventh IEEE International Conference on Computer Vision (Vol. 1, pp. 255–261). IEEE (1999)

  46. Wang, Y., Jodoin, P. M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 387–394) (2014)

  47. Vacavant, A., Chateau, T., Wilhelm, A., Lequièvre, L.: A benchmark dataset for outdoor foreground/background extraction. In: Asian Conference on Computer Vision (pp. 291–300). Springer, Berlin (2012)

  48. Cuevas, C., Yáñez, E.M., García, N.: Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput. Vis. Image Understand. 152, 103–117 (2016)

    Article  Google Scholar 

  49. Li, C., Wang, X., Zhang, L., Tang, J., Wu, H., Lin, L.: Weighted low-rank decomposition for robust grayscale-thermal foreground detection. IEEE Trans. Circuits Syst. Video Technol. 27(4), 725–738 (2017)

    Google Scholar 

  50. Maddalena, L., Petrosino, A.: Towards benchmarking scene background initialization. In: International Conference on Image Analysis and Processing (pp. 469–476). Springer, Cham (2015)

  51. Roy, S. D., Bhowmik, M. K. (2020). Annotation and benchmarking of a video dataset under degraded complex atmospheric conditions and its visibility enhancement analysis for moving object detection. IEEE Trans. Circuits Syst. Video Technol.

  52. Sultana, M., Jung, S. K.: Illumination invariant foreground object segmentation using ForeGANs (2019)

  53. Airport Ground Video Surveillance Benchmark. http://www.agvs-caac.com/. Accessed 18 Aug 2020

  54. Moyà-Alcover, G., Elgammal, A., Jaume-i-Capó, A., Varona, J.: Modeling depth for nonparametric foreground segmentation using RGBD devices. Pattern Recogn. Lett. 96, 76–85 (2017)

    Article  Google Scholar 

  55. Camplani, M., Maddalena, L., Alcover, G. M., Petrosino, A., Salgado, L.: A benchmarking framework for background subtraction in RGBD videos. In: International Conference on Image Analysis and Processing (pp. 219–229). Springer, Cham (2017)

  56. Li, S., Florencio, D., Li, W., Zhao, Y., Cook, C.: A fusion framework for camouflaged moving foreground detection in the wavelet domain. IEEE Trans. Image Process. 27(8), 3918–3930 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yao, G., Lei, T., Zhong, J., Jiang, P., Jia, W.: Comparative evaluation of background subtraction algorithms in remote scene videos captured by MWIR sensors. Sensors 17(9), 1945 (2017)

    Article  Google Scholar 

  58. Bloisi, D. D., Iocchi, L., Pennisi, A., Tombolini, L.: ARGOS-Venice boat classification. In: Proceedings of the 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6). IEEE (2015)

  59. Camplani, M., Salgado, L.: Background foreground segmentation with RGB-D Kinect data: an efficient combination of classifiers. J. Vis. Commun. Image Represen. 25(1), 122–136 (2014)

    Article  Google Scholar 

  60. Benezeth, Y., Sidibé, D., Thomas, J. B.: Background subtraction with multispectral video sequences (2014)

  61. Wu, Z., Fuller, N., Theriault, D., Betke, M.: A thermal infrared video benchmark for visual analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 201–208) (2014)

  62. Abdelhedi, S., Wali, A., Alimi, A. M.: Toward a kindergarten video surveillance system (kvss) using background subtraction based type-2 fgmm model. In: Proceedings of the 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR) (pp. 440–446). IEEE (2014)

  63. Fernandez-Sanchez, E.J., Diaz, J., Ros, E.: Background subtraction based on color and depth using active sensors. Sensors 13(7), 8895–8915 (2013)

    Article  Google Scholar 

  64. Fernandez-Sanchez, E.J., Rubio, L., Diaz, J., Ros, E.: Background subtraction model based on color and depth cues. Mach. Vis. Appl. 25(5), 1211–1225 (2014)

    Article  Google Scholar 

  65. Akula, A., Ghosh, R., Kumar, S., Sardana, H.K.: Moving target detection in thermal infrared imagery using spatiotemporal information. JOSA A 30(8), 1492–1501 (2013)

    Article  Google Scholar 

  66. Gallego Vila, J.: Parametric region-based foreground segmentation in planar and multi-view sequences (2013)

  67. Goyette, N., Jodoin, P. M., Porikli, F., Konrad, J., Ishwar, P.: Change detection net: a new change detection benchmark dataset. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 1–8). IEEE (2012)

  68. Brutzer, S., Höferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: CVPR 2011 (pp. 1937–1944). IEEE (2011)

  69. Singh, S., Velastin, S. A., Ragheb, H.: Muhavi: a multicamera human action video dataset for the evaluation of action recognition methods. In: Proceedings of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (pp. 48–55). IEEE (2010)

  70. Tiburzi, F., Escudero, M., Bescós, J., Martínez, J. M.: A ground truth for motion-based video-object segmentation. In: Proceedings of the 2008 15th IEEE International Conference on Image Processing (pp. 17–20). IEEE (2008)

  71. Laboratory for Image and Media Understanding. http://limu.ait.kyushu-u.ac.jp/dataset/en/. Accessed 5 Aug 2020

  72. Mahadevan, V., Vasconcelos, N.: Background subtraction in highly dynamic scenes. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–6). IEEE (2008)

  73. SZTAKI Surveillance Benchmark Set. http://web.eee.sztaki.hu/~bcsaba/FgShBenchmark.htm. Accessed 5 Aug 2020

  74. Davis, J.W., Sharma, V.: Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Understand. 106(2–3), 162–182 (2007)

    Article  Google Scholar 

  75. Branch, H. O. S. D.: Imagery library for intelligent detection systems (i-lids). In: Proceedings of the 2006 IET Conference on Crime and Security (pp. 445–448). IET (2006)

  76. Calderara, S., Melli, R., Prati, A., Cucchiara, R.: Reliable background suppression for complex scenes. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks (pp. 211–214) (2006)

  77. Nghiem, A. T., Bremond, F., Thonnat, M., Valentin, V.: ETISEO, performance evaluation for video surveillance systems. In: Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance (pp. 476–481). IEEE (2007)

  78. Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1778–1792 (2005)

    Article  Google Scholar 

  79. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13(11), 1459–1472 (2004)

    Article  Google Scholar 

  80. Davis, J. W., Keck, M. A.: A two-stage template approach to person detection in thermal imagery. In: Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05)-Volume 1 (Vol. 1, pp. 364–369). IEEE (2005)

  81. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25(7), 918–923 (2003)

    Article  Google Scholar 

  82. Young, D. P., Ferryman, J. M.: Pets metrics: on-line performance evaluation service. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (pp. 317–324). IEEE (2005)

  83. El Baf, F., Bouwmans, T., Vachon, B.: Comparison of background subtraction methods for a multimedia application. In: Proceedings of the 2007 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services (pp. 385–388). IEEE (2007)

  84. Caltech Camera Traps. https://beerys.github.io/CaltechCameraTraps/. Accessed 8 Aug 2020

  85. Underwater Change Detection. http://underwaterchangedetection.eu/. Accesses 10 Aug 2020

  86. Kavasidis, I., Palazzo, S., Di Salvo, R., Giordano, D., Spampinato, C.: An innovative web-based collaborative platform for video annotation. Multimedia Tools Appl. 70(1), 413–432 (2014)

    Article  Google Scholar 

  87. Burgos-Artizzu, X. P., Dollár, P., Lin, D., Anderson, D. J., Perona, P.: Social behavior recognition in continuous video. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1322–1329). IEEE (2012)

  88. Balcilar, M., Amasyali, M.F., Sonmez, A.C.: Moving object detection using Lab2000HL color space with spatial and temporal smoothing. Appl. Math. Inform. Sci. 8(4), 1755 (2014)

    Article  Google Scholar 

  89. Romero, J.D., Lado, M.J., Mendez, A.J.: A background modeling and foreground detection algorithm using scaling coefficients defined with a color model called lightness-red-green-blue. IEEE Trans. Image Process. 27(3), 1243–1258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  90. Suhr, J.K., Jung, H.G., Li, G., Kim, J.: Mixture of Gaussians-based background subtraction for Bayer-pattern image sequences. IEEE Trans. Circuits Syst. Video Technol. 21(3), 365–370 (2010)

    Article  Google Scholar 

  91. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intel. 28(4), 657–662 (2006)

    Article  Google Scholar 

  92. Du, X., Qin, G.: Foreground detection in surveillance videos via a hybrid local texture based method. Int. J. Smart Sens. Intell. Syst. 9, 4 (2016)

    Google Scholar 

  93. Vasamsetti, S., Mittal, N., Neelapu, B.C., Sardana, H.K.: 3D local spatio-temporal ternary patterns for moving object detection in complex scenes. Cogn. Comput. 11(1), 18–30 (2019)

    Article  Google Scholar 

  94. Rivera, A.R., Murshed, M., Kim, J., Chae, O.: Background modeling through statistical edge-segment distributions. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1375–1387 (2013)

    Article  Google Scholar 

  95. Roy, K., Kim, J., Iqbal, M. T. B., Makhmudkhujaev, F., Ryu, B., Chae, O.: An adaptive fusion scheme of color and edge features for background subtraction. In: Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6). IEEE (2017)

  96. Tang, P., Gao, L., Liu, Z.: Salient moving object detection using stochastic approach filtering. In: Fourth International Conference on Image and Graphics (ICIG 2007) (pp. 530–535). IEEE (2007)

  97. Dou, J., Li, J.: Modeling the background and detecting moving objects based on Sift flow. Optik 125(1), 435–440 (2014)

    Article  Google Scholar 

  98. Huang, J., Zou, W., Zhu, J., Zhu, Z.: Optical flow based real-time moving object detection in unconstrained scenes (2018)

  99. Camplani, M., del Blanco, C.R., Salgado, L., Jaureguizar, F., García, N.: Advanced background modeling with RGB-D sensors through classifiers combination and inter-frame foreground prediction. Mach. Vis. Appl. 25(5), 1197–1210 (2014)

    Google Scholar 

  100. Hati, K.K., Sa, P.K., Majhi, B.: Intensity range based background subtraction for effective object detection. IEEE Signal Process. Lett. 20(8), 759–762 (2013)

    Article  Google Scholar 

  101. Jang, D., Jin, X., Choi, Y., Kim, T.: Background subtraction based on local orientation histogram. In: Asia-Pacific Conference on Computer Human Interaction (pp. 222–231). Springer, Berlin, Heidelberg (2008)

  102. Chiranjeevi, P., Sengupta, S.: Detection of moving objects using multi-channel kernel fuzzy correlogram based background subtraction. IEEE Trans. Cybern. 44(6), 870–881 (2013)

    Article  Google Scholar 

  103. Chiranjeevi, P., Sengupta, S.: Robust detection of moving objects in video sequences through rough set theory framework. Image Vis. Comput. 30(11), 829–842 (2012)

    Article  Google Scholar 

  104. Zhao, P., Zhao, Y., Cai, A.: Hierarchical codebook background model using haar-like features. In: Proceedings of the 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content (pp. 438–442). IEEE (2012)

  105. López-Rubio, F.J., López-Rubio, E.: Features for stochastic approximation based foreground detection. Comput. Vis. Image Understand. 133, 30–50 (2015)

    Article  Google Scholar 

  106. Narayana, M., Hanson, A., Learned-Miller, E.G.: Background subtraction: separating the modeling and the inference. Mach. Vis. Appl. 25(5), 1163–1174 (2014)

    Article  Google Scholar 

  107. Dey, B., Kundu, M.K.: Enhanced macroblock features for dynamic background modeling in H. 264/AVC video encoded at low bitrate. IEEE Trans. Circuits Syst. Video Technol. 28(3), 616–625 (2016)

    Article  Google Scholar 

  108. Han, G., Wang, J., Cai, X.: Background subtraction based on three-dimensional discrete wavelet transform. Sensors 16(4), 456 (2016)

    Article  Google Scholar 

  109. Shen, Y., Hu, W., Yang, M., Liu, J., Wei, B., Lucey, S., Chou, C.T.: Real-time and robust compressive background subtraction for embedded camera networks. IEEE Trans. Mobile Comput. 15(2), 406–418 (2015)

    Article  Google Scholar 

  110. Chen, Y., Wang, J., Li, J., Lu, H.: Multiple features based shared models for background subtraction. In: Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP) (pp. 3946–3950). IEEE (2015)

  111. Yan, J., Wang, S., Xie, T., Yang, Y., Wang, J.: Variational Bayesian learning for background subtraction based on local fusion feature. IET Comput. Vis. 10(8), 884–893 (2016)

    Article  Google Scholar 

  112. Chao, G., Ying, W., Xiangyang, W.: Multi-feature robust principal component analysis for video moving object segmentation. J. Image Graph. 18(9), 1124–1132 (2013)

    Google Scholar 

  113. Javed, S., Oh, S.H., Bouwmans, T., Jung, S.K.: Robust background subtraction to global illumination changes via multiple features-based online robust principal components analysis with Markov random field. J. Elect. Imag. 24(4), 043011 (2015)

    Article  Google Scholar 

  114. Giraldo-Zuluaga, J.H., Salazar, A., Gomez, A., Diaz-Pulido, A.: Camera-trap images segmentation using multi-layer robust principal component analysis. Vis. Comput. 35(3), 335–347 (2019)

    Article  Google Scholar 

  115. Singh, R.P., Sharma, P.: Instance-vote-based motion detection using spatially extended hybrid feature space. Vis. Comput. 1, 17 (2020)

    Google Scholar 

  116. Minematsu, T., Shimada, A., Uchiyama, H., Taniguchi, R.I.: Analytics of deep neural network-based background subtraction. J. Imag. 4(6), 78 (2018)

    Article  Google Scholar 

  117. Zhang, Y., Li, X., Zhang, Z., Wu, F., Zhao, L.: Deep learning driven blockwise moving object detection with binary scene modeling. Neurocomputing 168, 454–463 (2015)

    Article  Google Scholar 

  118. García-González, J., Ortiz-de-Lazcano-Lobato, J. M., Luque-Baena, R. M., Molina-Cabello, M. A., López-Rubio, E.: Background modeling for video sequences by stacked denoising autoencoders. In: Proceedings of the Conference of the Spanish Association for Artificial Intelligence (pp. 341–350). Springer, Cham (2018)

  119. García-González, J., Ortiz-de-Lazcano-Lobato, J.M., Luque-Baena, R.M., Molina-Cabello, M.A., López-Rubio, E.: Foreground detection by probabilistic modeling of the features discovered by stacked denoising autoencoders in noisy video sequences. Pattern Recogn. Lett. 125, 481–487 (2019)

    Article  Google Scholar 

  120. Nguyen, T.P., Pham, C.C., Ha, S.V.U., Jeon, J.W.: Change detection by training a triplet network for motion feature extraction. IEEE Trans. Circuits Syst. Video Technol. 29(2), 433–446 (2018)

    Article  Google Scholar 

  121. Shafiee, M. J., Siva, P., Fieguth, P., Wong, A.: Embedded motion detection via neural response mixture background modeling. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 837–844). IEEE (2016)

  122. Shafiee, M.J., Siva, P., Fieguth, P., Wong, A.: Real-time embedded motion detection via neural response mixture modeling. J. Signal Process. Syst. 90(6), 931–946 (2018)

    Article  Google Scholar 

  123. Shafiee, M.J., Siva, P., Wong, A.: Stochasticnet: Forming deep neural networks via stochastic connectivity. IEEE Access 4, 1915–1924 (2016)

    Article  Google Scholar 

  124. Lee, B., Hedley, M.: Background estimation for video surveillance. In: Image and Vision Computing New Zealand 2002, (IVCNZ) (pp. 315–320) (2002)

  125. Shi, P., Jones, E. G., Zhu, Q.: Median model for background subtraction in intelligent transportation system. In: Image Processing: Algorithms and Systems III (Vol. 5298, pp. 168–176). International Society for Optics and Photonics (2004)

  126. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  127. Zhang, S., Yao, H., Liu, S.: Dynamic background subtraction based on local dependency histogram. Int. J. Pattern Recogn. Artif. Intell. 23(07), 1397–1419 (2009)

    Article  Google Scholar 

  128. Kuo, C. M., Chang, W. H., Wang, S. B., Liu, C. S.: An efficient histogram-based method for background modeling. In: Proceedings of the 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC) (pp. 480–483). IEEE (2009)

  129. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  130. Stauffer, C., Grimson, W. E. L.: Adaptive background mixture models for real-time tracking. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 2, pp. 246–252). IEEE (1999)

  131. Lin, H.H., Chuang, J.H., Liu, T.L.: Regularized background adaptation: a novel learning rate control scheme for Gaussian mixture modeling. IEEE Trans. Image Process. 20(3), 822–836 (2010)

    MathSciNet  MATH  Google Scholar 

  132. Zhao, X., Liu, P., Liu, J., Tang, X.: Background subtraction using semantic-based hierarchical GMM. Elect. Lett. 48(14), 825–827 (2012)

    Article  Google Scholar 

  133. Alvar, M., Rodriguez-Calvo, A., Sanchez-Miralles, A., Arranz, A.: Mixture of merged gaussian algorithm using RTDENN. Mach. Vis. Appl. 25(5), 1133–1144 (2014)

    Article  Google Scholar 

  134. Lee, J., Park, M.: An adaptive background subtraction method based on kernel density estimation. Sensors 12(9), 12279–12300 (2012)

    Article  Google Scholar 

  135. Butler, D. E., Bove, V. M., Sridharan, S. (2005). Real-time adaptive foreground/background segmentation. EURASIP J. Adv. Signal Process. 2005(14), 841926.

  136. Tao, F., Lin-sheng, L., Qi-chuan, T.: A novel adaptive motion detection based on k-means clustering. In: Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology (Vol. 3, pp. 136–140). IEEE (2010)

  137. Xiao, M., Han, C., Kang, X.: A background reconstruction for dynamic scenes. In: Proceedings of the 2006 9th International Conference on Information Fusion (pp. 1–7). IEEE (2006)

  138. Xiao, M., Zhang, L.: A background reconstruction algorithm based on modified basic sequential clustering. In: proceedings of the 2008 ISECS International Colloquium on Computing, Communication, Control, and Management (Vol. 1, pp. 47–51). IEEE (2008)

  139. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground–background segmentation using codebook model. Real-Time Imag. 11(3), 172–185 (2005)

    Article  Google Scholar 

  140. Wu, M., Peng, X.: Spatio-temporal context for codebook-based dynamic background subtraction. AEU-Int. J. Elect. Commun. 64(8), 739–747 (2010)

    Article  Google Scholar 

  141. Messelodi, S., Modena, C. M., Segata, N., Zanin, M.: A kalmanfilter based background updating algorithm robust to sharp illumination changes. In: International Conference on Image Analysis and Processing (pp. 163–170). Springer, Berlin, Heidelberg (2005)

  142. Chang, R., Gandhi, T., Trivedi, M. M.: Vision modules for a multi-sensory bridge monitoring approach. In: Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749) (pp. 971–976). IEEE (2004)

  143. Yan, L.F., Tu, X.Y.: Background modeling based on Chebyshev approximation. J. Syst. Simul. 20(4), 944–946 (2008)

    MathSciNet  Google Scholar 

  144. Karman, K. P.: Moving object recognition using an adaptive background memory. Proc. Time Vary. Image Process. (1990).

  145. Zhong, J.: Segmenting foreground objects from a dynamic textured background via a robust kalman filter. In: Proceedings Ninth IEEE International Conference on Computer Vision (pp. 44–50). IEEE. (2003)

  146. Gao, D., Zhou, J.: Adaptive background estimation for real-time traffic monitoring. In: ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585) (pp. 330–333). IEEE (2001)

  147. Scott, J., Pusateri, M. A., Cornish, D.: Kalman filter based video background estimation. In: Proceedings of the 2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009) (pp. 1–7). IEEE (2009)

  148. Mukherjee, D., JonathanWu, Q.M.: Real-time video segmentation using student’s t mixture model. Proc. Comput. Sci. 10, 153–160 (2012)

    Article  Google Scholar 

  149. Haines, T.S., Xiang, T.: Background subtraction with Dirichlet process mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 670–683 (2013)

    Article  Google Scholar 

  150. Faro, A., Giordano, D., Spampinato, C.: Adaptive background modeling integrated with luminosity sensors and occlusion processing for reliable vehicle detection. IEEE Trans. Intell. Transp. Syst. 12(4), 1398–1412 (2011)

    Article  Google Scholar 

  151. Elguebaly, T., Bouguila, N.: Finite asymmetric generalized Gaussian mixture models learning for infrared object detection. Comput. Vis. Image Understand. 117(12), 1659–1671 (2013)

    Article  Google Scholar 

  152. Lanza, A., Tombari, F., Di Stefano, L.: Accurate and efficient background subtraction by monotonic second-degree polynomial fitting. In: Proceedings of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (pp. 376–383). IEEE (2010)

  153. Ding, J., Li, M., Huang, K., Tan, T.: Modeling complex scenes for accurate moving objects segmentation. In: Asian Conference on Computer Vision (pp. 82–94). Springer, Berlin, Heidelberg (2010)

  154. Liu, Z., Huang, K., Tan, T.: Foreground object detection using top-down information based on EM framework. IEEE Trans Image Process. 21(9), 4204–4217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  155. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: Subsense: A universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  156. St-Charles, P. L., Bilodeau, G. A., Bergevin, R.: A self-adjusting approach to change detection based on background word consensus. In: Proceedings of the 2015 IEEE winter conference on applications of computer vision (pp. 990–997). IEEE (2015)

  157. El Baf, F., Bouwmans, T., Vachon, B.: Type-2 fuzzy mixture of Gaussians model: application to background modeling. In: Proceedings of the International Symposium on Visual Computing (pp. 772–781). Springer, Berlin, Heidelberg (2008)

  158. El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 60–65). IEEE (2009)

  159. Maddalena, L., Petrosino, A.: Multivalued background/foreground separation for moving object detection. In: Proceedings of the International Workshop on Fuzzy Logic and Applications (pp. 263–270). Springer, Berlin, Heidelberg (2009)

  160. Zhang, H., Xu, D.: Fusing color and texture features for background model. In: Proceedings of the Fuzzy Systems and Knowledge Discovery: Third International Conference, FSKD 2006, Xi’an, China, September 24–28, 2006. Proceedings 3 (pp. 887–893). Springer Berlin Heidelberg (2006)

  161. Azab, M. M., Shedeed, H. A., Hussein, A. S.: A new technique for background modeling and subtraction for motion detection in real-time videos. In: Proceedings of the 2010 IEEE International Conference on Image Processing (pp. 3453–3456). IEEE (2010)

  162. Porikli, F., Wren, C.: Change detection by frequency decomposition: wave-back. In: Proceedings of the Proc. of Workshop on Image Analysis for Multimedia Interactive Services (2005)

  163. Wren, C. R., &Porikli, F.: Waviz: spectral similarity for object detection. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (pp. 55–61) (2005)

  164. Tezuka, H., Nishitani, T.: A precise and stable foreground segmentation using fine-to-coarse approach in transform domain. In: Proceedings of the 2008 15th IEEE International Conference on Image Processing (pp. 2732–2735). IEEE. (2008)

  165. Tezuka, H., Nishitani, T.: Multiresolutional Gaussian mixture model for precise and stable foreground segmentation in transform domain. IEICE Trans. Fundam. Elect. Commun. Comput. Sci. 92(3), 772–778 (2009)

  166. Ji, Z., Wang, W., Lu, K.: Extract foreground objects based on sparse model of spatiotemporal spectrum. In: Proceedings of the 2013 IEEE International Conference on Image Processing (pp. 3441–3445). IEEE (2013)

  167. Jalal, A.S., Singh, V.: A framework for background modelling and shadow suppression for moving object detection in complex wavelet domain. Multimedia Tools Appl. 73(2), 779–801 (2014)

    Article  Google Scholar 

  168. Baltieri, D., Vezzani, R., Cucchiara, R.: Fast background initialization with recursive Hadamard transform. In: Proceedings of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (pp. 165–171). IEEE (2010)

  169. Cevher, V., Sankaranarayanan, A., Duarte, M. F., Reddy, D., Baraniuk, R. G., Chellappa, R.: Compressive sensing for background subtraction. In: Proceedings of the European Conference on Computer Vision (pp. 155–168). Springer, Berlin, Heidelberg (2008)

  170. Dikmen, M., Huang, T. S.: Robust estimation of foreground in surveillance videos by sparse error estimation. In: Proceedings of the 2008 19th International Conference on Pattern Recognition (pp. 1–4). IEEE (2008)

  171. Huang, J., Zhang, T., Metaxas, D.: Learning with Structured Sparsity. J. Mach. Learn. Res. 12, 11 (2011)

    MathSciNet  MATH  Google Scholar 

  172. Zhao, C., Wang, X., Cham, W.K.: Background subtraction via robust dictionary learning. EURASIP J. Image Video Process. 2011, 1–12 (2011)

    Article  Google Scholar 

  173. Huang, X., Wu, F., Huang, P.: Moving-object detection based on sparse representation and dictionary learning. Aasri Proced. 1, 492–497 (2012)

    Article  Google Scholar 

  174. Huang, J., Huang, X., Metaxas, D.: Learning with dynamic group sparsity. In: Proceedings of the 2009 IEEE 12th International Conference on Computer Vision (pp. 64–71). IEEE (2009)

  175. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  176. Jiménez-Hernández, H.: Background subtraction approach based on independent component analysis. Sensors 10(6), 6092–6114 (2010)

    Article  Google Scholar 

  177. Chu, Y., Wu, X., Liu, T., Liu, J.: A basis-background subtraction method using non-negative matrix factorization. In: Proceedings of the Second International Conference on Digital Image Processing (Vol. 7546, p. 75461A). International Society for Optics and Photonics (2010)

  178. Hu, W., Li, X., Zhang, X., Shi, X., Maybank, S., Zhang, Z.: Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int. J. Comput. Vis. 91(3), 303–327 (2011)

    Article  MATH  Google Scholar 

  179. Farcas, D., Bouwmans, T.: Background modeling via a supervised subspace learning. In: Proceedings of the International Conference on Image, Video Processing and Computer Vision, IVPCV (pp. 1–7) (2010)

  180. Farcas, D., Marghes, C., Bouwmans, T.: Background subtraction via incremental maximum margin criterion: a discriminative subspace approach. Mach. Vis. Appl. 23(6), 1083–1101 (2012)

    Article  Google Scholar 

  181. Marghes, C., Bouwmans, T., Vasiu, R.: Background modeling and foreground detection via a reconstructive and discriminative subspace learning approach. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012 (2012)

  182. Javed, S., Mahmood, A., Bouwmans, T., Jung, S.K.: Spatiotemporal low-rank modeling for complex scene background initialization. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1315–1329 (2016)

    Article  Google Scholar 

  183. He, J., Balzano, L., Szlam, A.: Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1568–1575). IEEE (2012)

  184. Chouvardas, S., Kopsinis, Y., Theodoridis, S.: Robust subspace tracking with missing entries: the set-theoretic approach. IEEE Trans. Signal Process. 63(19), 5060–5070 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  185. Xie, Y., Huang, J., Willett, R.: Change-point detection for high-dimensional time series with missing data. IEEE J. Select. Top. Signal Process. 7(1), 12–27 (2012)

    Article  Google Scholar 

  186. Schofield, A.J., Mehta, P.A., Stonham, T.J.: A system for counting people in video images using neural networks to identify the background scene. Pattern Recogn. 29(8), 1421–1428 (1996)

    Article  Google Scholar 

  187. Tavakkoli, A.: Foreground-background segmentation in video sequences using neural networks. Intell. Syst. Neural Netw. Appl. (2005).

  188. Culibrk, D., Marques, O., Socek, D., Kalva, H., Furht, B.: Neural network approach to background modeling for video object segmentation. IEEE Trans. Neural Netw. 18(6), 1614–1627 (2007)

    Article  Google Scholar 

  189. Luque, R. M., Domínguez, E., Palomo, E. J., Muñoz, J.: A neural network approach for video object segmentation in traffic surveillance. In: Proceedings of the International Conference Image Analysis and Recognition (pp. 151–158). Springer, Berlin, Heidelberg (2008)

  190. Maddalena, L., Petrosino, A.: The 3dSOBS+ algorithm for moving object detection. Comput. Vis. Image Understand. 122, 65–73 (2014)

    Article  Google Scholar 

  191. Ramirez-Quintana, J.A., Chacon-Murguia, M.I.: Self-adaptive SOM-CNN neural system for dynamic object detection in normal and complex scenarios. Pattern Recogn. 48(4), 1137–1149 (2015)

    Article  Google Scholar 

  192. Gemignani, G., Rozza, A.: A robust approach for the background subtraction based on multi-layered self-organizing maps. IEEE Trans. Image Process. 25(11), 5239–5251 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  193. Chacon-Murguia, M.I., Gonzalez-Duarte, S.: An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems. IEEE Trans. Ind. Elect. 59(8), 3286–3298 (2011)

    Article  Google Scholar 

  194. Palomo, E.J., Domínguez, E., Luque-Baena, R.M., Muñoz, J.: Image compression and video segmentation using hierarchical self-organization. Neural Process. Lett. 37(1), 69–87 (2013)

    Article  Google Scholar 

  195. Bianco, S., Ciocca, G., Schettini, R.: Combination of video change detection algorithms by genetic programming. IEEE Trans. Evolut. Comput. 21(6), 914–928 (2017)

    Article  Google Scholar 

  196. Yan, Y., Zhao, H., Kao, F. J., Vargas, V. M., Zhao, S., Ren, J.: Deep background subtraction of thermal and visible imagery for pedestrian detection in videos. In: Proceedings of the International Conference on Brain Inspired Cognitive Systems (pp. 75–84). Springer, Cham (2018)

  197. Christiansen, P., Nielsen, L.N., Steen, K.A., Jørgensen, R.N., Karstoft, H.: DeepAnomaly: Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors 16(11), 1904 (2016)

    Article  Google Scholar 

  198. Sheri, A.M., Rafique, M.A., Jeon, M., Pedrycz, W.: Background subtraction using Gaussian-Bernoulli restricted Boltzmann machine. IET Image Process. 12(9), 1646–1654 (2018)

    Article  Google Scholar 

  199. Rafique, A., Sheri, A. M., Jeon, M.: Background scene modeling for PTZ cameras using RBM. In: Proceedings of The 2014 International Conference on Control, Automation and Information Sciences (ICCAIS 2014) (pp. 165–169). IEEE (2014)

  200. Xu, P., Ye, M., Li, X., Liu, Q., Yang, Y., Ding, J.: Dynamic background learning through deep auto-encoder networks. In: Proceedings of the Proceedings of the 22nd ACM international conference on Multimedia (pp. 107–116) (2014)

  201. Qu, Z., Yu, S., Fu, M.: Motion background modeling based on context-encoder. In: Proceedings of the 2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR) (pp. 1–5). IEEE (2016)

  202. Wang, Y., Luo, Z., Jodoin, P.M.: Interactive deep learning method for segmenting moving objects. Pattern Recogn. Lett. 96, 66–75 (2017)

    Article  Google Scholar 

  203. Lim, L. A., Keles, H. Y.: Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding (2018)

  204. Lim, L.A., Keles, H.Y.: Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recogn. Lett. 112, 256–262 (2018)

    Article  Google Scholar 

  205. Lim, L. A., Keles, H.Y.: Learning multi-scale features for foreground segmentation. Pattern Anal. Appl. 1–12 (2019)

  206. Yang, L., Li, J., Luo, Y., Zhao, Y., Cheng, H., Li, J.: Deep background modeling using fully convolutional network. IEEE Trans. Intell. Transp. Syst. 19(1), 254–262 (2017)

    Article  Google Scholar 

  207. Zeng, D., Zhu, M.: Multiscale fully convolutional network for foreground object detection in infrared videos. IEEE Geosci. Remote Sens. Lett. 15(4), 617–621 (2018)

    Article  Google Scholar 

  208. Babaee, M., Dinh, D.T., Rigoll, G.: A deep convolutional neural network for video sequence background subtraction. Pattern Recogn. 76, 635–649 (2018)

    Article  Google Scholar 

  209. Wang, R., Bunyak, F., Seetharaman, G., Palaniappan, K.: Static and moving object detection using flux tensor with split gaussian models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 414–418) (2014)

  210. Ferryman, J., Shahrokni, A.: An overview of the pets 2009 challenge. In: Proceedings of Eleventh IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (pp. 25–30) (2009)

  211. Li, X., Ye, M., Liu, Y., Zhu, C.: Adaptive deep convolutional neural networks for scene-specific object detection. IEEE Trans. Circuits Syst. Video Technol. 29(9), 2538–2550 (2017)

    Article  Google Scholar 

  212. Chen, Y., Wang, J., Zhu, B., Tang, M., Lu, H.: Pixel-wise deep sequence learning for moving object detection. IEEE Trans. Circuits Syst. Video Technol. 29(9), 2567–2579 (2017)

    Article  Google Scholar 

  213. Sakkos, D., Liu, H., Han, J., Shao, L.: End-to-end video background subtraction with 3d convolutional neural networks. Multimedia Tools Appl. 77(17), 23023–23041 (2018)

    Article  Google Scholar 

  214. Vosters, L., Shan, C., Gritti, T.: Real-time robust background subtraction under rapidly changing illumination conditions. Image Vis. Comput. 30(12), 1004–1015 (2012)

    Article  Google Scholar 

  215. Hu, Z., Turki, T., Phan, N., Wang, J.T.: A 3D atrous convolutional long short-term memory network for background subtraction. IEEE Access 6, 43450–43459 (2018)

    Article  Google Scholar 

  216. Gao, Y., Cai, H., Zhang, X., Lan, L., Luo, Z.: Background subtraction via 3D convolutional neural networks. In: Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 1271–1276). IEEE (2018)

  217. Lim, K., Jang, W. D., Kim, C. S.: Background subtraction using encoder-decoder structured convolutional neural network. In: Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6). IEEE (2017)

  218. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

  219. Sultana, M., Mahmood, A., Javed, S., Jung, S.K.: Unsupervised deep context prediction for background estimation and foreground segmentation. Mach. Vis. Appl. 30(3), 375–395 (2019)

    Article  Google Scholar 

  220. Zheng, W., Wang, K., Wang, F.: Background subtraction algorithm based on Bayesian generative adversarial networks. Acta AutomaticaSinica 44(5), 878–890 (2018)

    Google Scholar 

  221. Zheng, W., Wang, K., Wang, F.Y.: A novel background subtraction algorithm based on parallel vision and Bayesian GANs. Neurocomputing 394, 178–200 (2020)

    Article  Google Scholar 

  222. Bakkay, M. C., Rashwan, H. A., Salmane, H., Khoudour, L., Puigtt, D., Ruichek, Y.: BSCGAN: Deep background subtraction with conditional generative adversarial networks. In: Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 4018–4022). IEEE (2018)

  223. Gracewell, J., John, M.: Dynamic background modeling using deep learning autoencoder network. Multimedia Tools Appl. 79(7), 4639–4659 (2020)

    Article  Google Scholar 

  224. Farnoosh, A., Rezaei, B., Ostadabbas, S.: DeepPBM: deep probabilistic background model estimation from video sequences (2019)

  225. Liao, J., Guo, G., Yan, Y., Wang, H.: Multiscale cascaded scene-specific convolutional neural networks for background subtraction. In: Proceedings of the Pacific Rim Conference on Multimedia (pp. 524–533). Springer, Cham (2018)

  226. Mandal, M., Dhar, V., Mishra, A., Vipparthi, S.K.: 3dfr: A swift 3d feature reductionist framework for scene independent change detection. IEEE Signal Process. Lett. 26(12), 1882–1886 (2019)

    Article  Google Scholar 

  227. Mandal, M., Vipparthi, S. K.: Scene independency matters: An empirical study of scene dependent and scene independent evaluation for CNN-based change detection. IEEE Trans. Intell. Transp. Syst. (2020)

  228. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of the International Conference on Medical image computing and computer-assisted intervention (pp. 234–241). Springer, Cham (2015)

  229. Kim, J.Y., Ha, J.E.: Foreground objects detection using a fully convolutional network with a background model image and multiple original images. IEEE Access 8, 159864–159878 (2020)

    Article  Google Scholar 

  230. Tezcan, O., Ishwar, P., Konrad, J.: BSUV-Net: a fully-convolutional neural network for background subtraction of unseen videos. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (pp. 2774–2783) (2020)

  231. Tezcan, M.O., Ishwar, P., Konrad, J.: BSUV-Net 2.0: Spatio-Temporal Data Augmentations for Video-Agnostic Supervised Background Subtraction. IEEE Access 9, 53849–53860 (2021)

    Article  Google Scholar 

  232. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Proceedings of the European conference on computer vision (pp. 751–767). Springer, Berlin, Heidelberg (2000)

  233. Maddalena, L., Petrosino, A.: The SOBS algorithm: What are the limits? In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 21–26). IEEE (2012)

  234. Chen, A.T.Y., Biglari-Abhari, M., Kevin, I., Wang, K.: SuperBE: computationally light background estimation with superpixels. J Real Time Image Process. 16(6), 2319–2335 (2019)

    Article  Google Scholar 

  235. Chen, Y.Q., Sun, Z.L., Lam, K.M.: An effective subsuperpixel-based approach for background subtraction. IEEE Trans. Ind. Elect. 67(1), 601–609 (2019)

    Article  Google Scholar 

  236. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  237. Xu, Z., Min, B., Cheung, R.C.: A robust background initialization algorithm with superpixel motion detection. Signal Process. Image Commun. 71, 1–12 (2019)

    Article  Google Scholar 

  238. Zeng, D., Chen, X., Zhu, M., Goesele, M., Kuijper, A.: Background subtraction with real-time semantic segmentation. IEEE Access 7, 153869–153884 (2019)

    Article  Google Scholar 

  239. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: Icnet for real-time semantic segmentation on high-resolution images. In: Proceedings of the European Conference on Computer Vision (ECCV) (pp. 405–420) (2018)

  240. Cioppa, A., Braham, M., Van Droogenbroeck, M.: Asynchronous semantic background subtraction. J. Imag. 6(6), 50 (2020)

    Article  Google Scholar 

  241. Giraldo, J. H., Bouwmans, T.: GraphBGS: background subtraction via recovery of graph signals (2020)

  242. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision (pp. 2961–2969) (2017)

Download references

Funding

No funds or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Rudrika Kalsotra had the idea for the article, performed the literature survey, carried out experiments and data analysis, and drafted the article. Dr. Sakshi Arora critically revised the work.

Corresponding author

Correspondence to Sakshi Arora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalsotra, R., Arora, S. Background subtraction for moving object detection: explorations of recent developments and challenges. Vis Comput 38, 4151–4178 (2022). https://doi.org/10.1007/s00371-021-02286-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02286-0

Keywords

Navigation