Skip to main content
Log in

Fractal image compression using a fast affine transform and hierarchical classification scheme

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Fractal image compression is one of the efficient structure-based methods in applications where images are compressed only once but decoded several times due to its resolution-independent feature and fast reconstruction time. However, it has high computational complexity restricting practical use most of the time. Although several methods have been developed to speed up the compression process, these do not satisfy the compression time or the decoded image quality requirements. The affine transforms of image blocks used in fractal coding require a huge number of multiplications and additions and are very expensive in computation that may also slow down the compression process. This paper presents a novel fractal image compression using a fast affine transform and hierarchical classification scheme. The applied affine transform computation algorithm of image blocks uses relationships among neighboring pixels of transformed image block that significantly reduces the number of multiplication and addition operations. Then, this strategy with hierarchical classification and class-wise domain sorting is applied in fractal coding with quad-tree and horizontal vertical partitioning schemes to reduce compression time. Experimental results show that the quad-tree-based fractal coding with the proposed scheme can significantly speed up the compression process keeping image quality and compression ratio almost unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wallace, GK.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)

  2. Barnsley, M.F.: Fractals Everywhere, 2nd edn. Academic Press, New York (1993)

    MATH  Google Scholar 

  3. Jacquin, A.E.: Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Process. 1(1), 18–30 (1992)

    Article  Google Scholar 

  4. Barnsley, M.F., Jacquin, A.E.: Application of recurrent iterated function systems to images. Proc SPIE 1001, 122–131 (1988)

    Article  Google Scholar 

  5. Fisher, Y.: Fractal Image Compression: Theory and Application. Springer, New York (1995)

    Book  Google Scholar 

  6. Wang, S.S., Tsai, S.L.: Automatic image authentication and recovery using fractal code embedding and image inpainting. Pattern Recognit. 41(2), 701–712 (2008)

    Article  MATH  Google Scholar 

  7. Lin, T.K., Yeh, S.L.: Encrypting image by assembling the fractal image addition method and the binary encoding method. Opt. Commun. 285(9), 2335–2342 (2012)

    Article  Google Scholar 

  8. Tang, X., Qu, C.: Facial image recognition based on fractal image encoding. Bell Labs Tech. J. 15(1), 209–214 (2010)

    Article  Google Scholar 

  9. Ghazel, M., Freeman, G.H., Vrscay, E.R.: Fractal image denoising. IEEE Trans. Image Process. 12(12), 1560–1578 (2003)

    Article  Google Scholar 

  10. Papathomas, T.V., Julesz, B.: Animation with fractals from variations on the mandelbrot set. Vis. Comput. 3, 23–26 (1987). https://doi.org/10.1007/BF02153648

    Article  Google Scholar 

  11. Davern, P., Scott, M.: Fractal based image steganography. In: Anderson, R. (ed.) Information Hiding, pp. 279–294. Springer, Berlin (1996)

    Chapter  Google Scholar 

  12. Liao, X., Wen, Q., Song, T., Zhang, J.: Quantum steganography with high efficiency with noisy depolarizing channels. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E96.A(10), 2039–2044 (2013). https://doi.org/10.1587/transfun.E96.A.2039

  13. Liao, X., Wen, Q., Zhang, J.: Improving the adaptive steganographic methods based on modulus function. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. e96.A(12), 2731–2734 (2013). https://doi.org/10.1587/transfun.E96.A.2731

  14. Liao, X., Shu, C.: Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J. Vis. Commun. Image Represent. 28, 21–27 (2015). https://doi.org/10.1016/j.jvcir.2014.12.007

    Article  Google Scholar 

  15. Truong, T.K., Kung, C.M., Jeng, J.H., Hsieh, M.L.: Fast fractal image compression using spatial correlation. Chaos Solitons Fractals 22(5), 1071–1076 (2004)

    Article  MATH  Google Scholar 

  16. He, C., Xu, X., Li, G.: Improvement of fast algorithm based on correlation coefficients for fractal image encoding. Comput. Simul. 12(4), 60–63 (2005)

    Google Scholar 

  17. Wang, X., Wang, Y., Yun, J.: An improved fast fractal image compression using spatial texture correlation. Chin. Phys. B 20(10), 104202-1-104202–11 (2011)

    Article  Google Scholar 

  18. Wang, J., Zheng, N.: A novel fractal image compression scheme with block classification and sorting based on Pearson’s correlation coefficient. IEEE Trans. Image Process. 22(9), 3690–3702 (2013)

    Article  Google Scholar 

  19. Wang, J., Cheg, P.: Fast sparse fractal image compression. PLoS ONE 12(9), e0184408 (2017)

    Article  Google Scholar 

  20. Zhou, Y., Zhang, C., Zhang, Z.: An efficient fractal image coding algorithm using unified feature and DCT. Chaos Solitons Fractals 39(4), 1823–1830 (2009)

    Article  MATH  Google Scholar 

  21. Schwartz, W.R., Pedrini, H.: Improved fractal image compression based on robust feature descriptors. Int. J. Image Graph 11(4), 571–587 (2011)

    Article  MathSciNet  Google Scholar 

  22. Lai, A.C., Lam, K., Siu, W.: A fast fractal image coding based on kick-out and zero contrast conditions. IEEE Trans. Image Process. 12(11), 1398–1403 (2003)

    Article  MathSciNet  Google Scholar 

  23. Chen, H.N., Chung, K.L., Hung, J.E.: Novel fractal image encoding algorithm using normalized one-norm and kick-out condition. Image Vis. Comput. 28(3), 518–525 (2010)

    Article  Google Scholar 

  24. Jeng, J., Tseng, C., Hsieh, J.: Study on huber fractal image compression. IEEE Trans. Image Process. 18(5), 995–1003 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, Y.: Robust estimation of parameter for fractal inverse problem. Comput. Math. Appl. 60, 2099–2108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, J., Ye, Z., Zou, Y.: Huber fractal image coding based on a fitting plane. IEEE Trans. Image Process. 22(1), 134–145 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Distasi, R., Nappi, M., Riccio, D.: A range/domain approximation error-based approach for fractal image compression. IEEE Trans. Image Process. 15(1), 89–97 (2006)

    Article  Google Scholar 

  28. Xing, C., Ren, Y., Li, X.: A hierarchical classification matching scheme for fractal image compression. In: 2008 Congress on Image and Signal Processing, IEEE, pp. 283–286 (2008)

  29. Kovacs, T.: A fast classification based method for fractal image encoding. Image Vis. Comput. 26(8), 1129–1136 (2008)

    Article  Google Scholar 

  30. Wang, X., Zhang, D.: Discrete wavelet transform-based simple range classification strategies for fractal image coding. Nonlinear Dyn. 75(3), 439–448 (2014)

    Article  Google Scholar 

  31. Bhattacharya, N., Roy, S., Nandi, U., Banerjee, S.: Fractal image compression using hierarchical classification of sub-images. In: 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015), SCITEPRESS, pp. 46–53 (2015)

  32. Nandi, U., Mandal, J.K.: Efficiency of adaptive fractal image compression with archetype classification and its modifications. Int. J. Comput. Appl. 38(2–3), 156–163 (2016)

    Google Scholar 

  33. Nandi, U., Mandal, J.K.: Fractal image compression with adaptive quardtree partitioning and archetype classification. In: IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN 2015), Kolkata, pp. 56–60 (2015). https://doi.org/10.1109/ICRCICN.2015.7434209

  34. Nandi, U.: An adaptive fractal-based image coding with hierarchical classification strategy and its modifications. Innov. Syst. Softw. Eng. 15(1), 35–42 (2019)

    Article  MathSciNet  Google Scholar 

  35. Nandi, U., Mandal, J.K.: A novel hierarchical classification scheme for adaptive quardtree partitioning based fractal image coding. In: Mandal, J.K., Sinha, D. (eds) Social Transformation—Digital Way. CSI 2018. Communications in Computer and Information Science, Springer Singapore, Kolkata, vol. 836, pp. 603–615 (2018)

  36. Wang, X.Y., Wang, Y.X., Yun, J.J.: An improved no-search fractal image coding method based on a fitting plane. Image Vis. Comput. 28(8), 1303–1308 (2010)

    Article  Google Scholar 

  37. Gupta, R., Mehrotra, D., Tyagi, R.K.: Adaptive searchless fractal image compression in DCT domain. Imaging Sci. J. 64(7), 374–380 (2016)

    Article  Google Scholar 

  38. Zhao, Y., Yuan, B.: A new affine transformation: its theory and application to image coding. IEEE Trans. Circuits Syst. Video Technol. 8(3), 269–274 (1998)

    Article  Google Scholar 

  39. Liu, S., Fu, W., Liqiang, H., et al.: Distribution of primary additional errors in fractal encoding method. Multimed. Tools Appl. 76, 5787–5802 (2017)

    Article  Google Scholar 

  40. Liu, S., Zhang, Z., Qi, L., et al.: A fractal image encoding method based on statistical loss used in agricultural image compression. Multimed. Tools Appl. 75, 15525–15536 (2016)

    Article  Google Scholar 

  41. Liu, S., Pan, Z., Cheng, X.: A novel fast fractal image compression method based on distance clustering in high dimensional sphere surface. Fractals 25(4), 1740004-1-1740004–11 (2017)

    Article  Google Scholar 

  42. Roy, S., Kumar, S., Chanda, B., et al.: Fractal image compression using upper bound on scaling parameter. Chaos Solitons Fractals 106, 16–22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Menassel, R., Nini, B., Mekhaznia, T.: An improved fractal image compression using wolf pack algorithm. J. Exp. Theor. Artif. Intell. 30(3), 429–439 (2018). https://doi.org/10.1080/0952813X.2017.1409281

    Article  Google Scholar 

  44. Nandi, U.: Fractal image compression with adaptive quadtree partitioning and non-linear affine map. Multimed. Tools Appl. 79, 26345–26368 (2020)

    Article  Google Scholar 

  45. Al Sideiri, A., Alzeidi, N., Al Hammoshi, M.: Cuda implementation of fractal image compression. J. Real-Time Image Proc. 17, 1375–1387 (2020). https://doi.org/10.1007/s11554-019-00894-7

    Article  Google Scholar 

  46. Menassel, R., Gaba, I., Titi, K.: Introducing bat inspired algorithm to improve fractal image compression. Int. J. Comput. Appl. 42(7), 697–704 (2020). https://doi.org/10.1080/1206212X.2019.1638631

    Article  Google Scholar 

  47. Nandi, U., Laya, B., Ghorai, A., Singh, M.M.: Three-level hierarchical classification scheme: its application to fractal image compression technique. In: Satapathy, S.C., Zhang, Y.D., Bhateja, V., Majhi, R. (eds.) Intelligent Data Engineering and Analytics, pp. 123–132. Springer, Singapore (2021)

    Chapter  Google Scholar 

  48. Nandi, U., Ghorai, A., Laya, B., Singh, M.M.: A fast partitioning strategy: its application to fractal image coding. In: Sherpa, K.S., Bhoi, A.K., Kalam, A., Mishra, M.K. (eds.) Advances in Smart Grid and Renewable Energy, pp. 237–247. Springer, Singapore (2021)

    Chapter  Google Scholar 

  49. Svynchuk, O., Barabash, O., Nikodem, J., Kochan, R., Laptiev, O.: Image compression using fractal functions. Fractal Fract. (2021). https://doi.org/10.3390/fractalfract5020031

    Article  Google Scholar 

  50. Lee, S., Lee, G., Gang, E.S., Kim, W.: Fast affine transform for real-time machine vision applications. In: Intelligent Computing, Springer, Berlin, pp. 1180–1190 (2006)

  51. Weber, G.: USC-SIPI Image Database: Version 4. University Southern California, Los Angeles, CA, USA, Department of Electrical Engineering-System, Technical Report (1993)

  52. Wang, Q., Bi, S.: Prediction of the PSNR quality of decoded images in fractal image coding. Math. Probl. Eng. 2016, 1–13 (2016)

    Google Scholar 

  53. Hore, A., Ziou, D.: Image quality metrics: PSNR versus SSIM. In: International Conference on Pattern Recognition Proceedings, IEEE, pp. 2366–2369 (2010)

  54. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We’d like to thank to the Dept. of Computer Science, Vidyasagar University, Paschim Medinipur, for providing infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Nandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, U. Fractal image compression using a fast affine transform and hierarchical classification scheme. Vis Comput 38, 3867–3880 (2022). https://doi.org/10.1007/s00371-021-02226-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02226-y

Keywords

Navigation