Skip to main content
Log in

Weighted local progressive-iterative approximation property for triangular Bézier surfaces

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Progressive-iterative approximation (abbr. PIA) is an important and intuitive method for fitting and interpolating scattered data points. The triangular Bernstein basis with uniformly distributed parameters has the PIA property. For the sake of more flexibility, this paper presents a local progressive-iterative approximation (abbr. LPIA) format, which allows only a chosen subset of the initial control points to adjust and shows that the LPIA format is convergent for triangular Bézier surface of degree \(n \le 17\) with uniform parameters. Furthermore, in order to accelerate the convergence rate, we develop a weighted LPIA format for triangular Bézier surfaces and prove that the weighted LPIA format has a faster convergence rate than the LPIA format when an optimal value of the weight is chosen. Finally, some numerical examples are presented to show the effectiveness of the LPIA method and the fast convergence of the weighted LPIA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qi, D., Tian, Z., Zhang, Y., et al.: The method of numeric polish in curve fitting. Acta Math. Sin. (Chin. Ser.) 18(3), 173–184 (1975)

    Google Scholar 

  2. de Boor, C.: How does Agee’s smoothing method work? In: Proceedings of the 1979 Army Numerical Analysis and Computers Conference, ARO Report 79–3, Army Research Office, 1979, pp. 299–302

  3. Lin, H.W., Wang, G.J., Dong, C.S.: Constructing iterative non-uniform B-spline curve and surface to fit data points. Sci. China Ser. F Inf. Sci. 47(3), 315–331 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lin, H.W., Bao, H.J., Wang, G.J.: Totally positive bases and progressive iteration approximation. Comput. Math. Appl. 50(3–4), 575–586 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shi, L., Wang, R.H.: An iterative algorithm of NURBS interpolation and approximation. J. Math. Res. Expos. 26(4), 735–743 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Delgado, J., Peňa, J.M.: Progressive iterative approximation and bases with the fastest convergence rates. Comput. Aided Geom. Des. 24(1), 10–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lu, L.Z.: Weighted progressive iteration approximation and convergence analysis. Comput. Aided Geom. Des. 27, 129–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, C.Y., Lin, H.W.: Progressive and iterative approximation for least squares B-spline curve and surface fitting. Comput. Aided Des. 47, 32–44 (2014)

    Article  MathSciNet  Google Scholar 

  9. Zhang, L., Tan, J.Q., Ge, X.Y., et al.: Generalized B-splines’ geometric iterative fitting method with mutually different weights. J. Comput. Appl. Math. 329, 331–343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, L., Ge, X.Y., Tan, J.Q.: Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights. Vis. Comput. 32(9), 1109–1120 (2016)

    Article  Google Scholar 

  11. Ebrahimi, A., Loghmani, G.B.: A composite iterative procedure with fast convergence rate for the progressive-iteration approximation of curves. J. Comput. Appl. Math. 359, 1–15 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, H.W.: Local progressive-iterative approximation format for blending curves and patches. Comput. Aided Geom. Des. 27, 322–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farin, G.: Curves and Surfaces for CAGD, 5th end. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  14. Hahmann, S., Bonneau, G.P.: Triangular G1 interpolation by 4-splitting domain triangles. Comput. Aided Geom. Des. 17(8), 731–757 (2000)

    Article  MATH  Google Scholar 

  15. Chen, J., Wang, G.J.: Progressive iterative approximation for triangular Bézier surfaces. Comput. Aided Des. 43, 889–895 (2011)

    Article  Google Scholar 

  16. Hu, Q.Q.: An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces. Appl. Math. Comput. 219, 9308–9316 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Liu, C.Z., Han, X.L., Li, J.C.: Preconditioned progressive iterative approximation for triangular Bézier patches and its application. J. Comput. Appl. Math. 366, 112389 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao Y., Lin H.W.: The PIA property of low degree non-uniform triangular B–B patches. Proceedings of the 12th International Conference on Computer-Aided Design and Computer Graphics. IEEE Compute Society Press, Los Alamitos, pp 239–243 (2011).

  19. Hu, Q.Q., Zhang, Y.H., Wang, G.J.: The least square progressive iterative approximation property of low degree non-uniform triangular Bézier surfaces. J. Comput. Aided Design Comput. Graphics 32(3), 360–366 (2020). ((In Chinese))

    Google Scholar 

  20. Dunll, C., Xu, Y.: Orthogonal Polynomial of Several Variables. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  21. Jaklič, G., Kanduč, T.: On positivity of principal minors of bivariate Bézier collocation matrix. Appl. Math. Comput. 227(15), 320–328 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  23. Farin, G.: The octant of a sphere as a non-degenerate triangular Bézier patch. Comput. Aided Geom. Des. 4, 329–332 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulation. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable suggestions and comments. This work is supported by the National Natural Science Foundation of China (Grant Nos 61772025, 61872316), the Natural Science Foundation of Zhejiang Province, China (No. LY19F020004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Main symbol table

Appendix A. Main symbol table

\({I}_{n}\)

The set of all 3-composition of the integer n

\(\Gamma\)

The set of the multi-index of the adjusted control points

\(\Phi\)

The set of the multi-index of the fixed control points

\(D_{{n,T}}\)

\(\{ ({i \mathord{\left/ {\vphantom {i n}} \right. \kern-\nulldelimiterspace} n},{j \mathord{\left/ {\vphantom {j n}} \right. \kern-\nulldelimiterspace} n},{k \mathord{\left/ {\vphantom {k n}} \right. \kern-\nulldelimiterspace} n}):(i,j,k) \in {I}_{n} \}\)

\({\mathbf{\xi }}_{{\mathbf{i}}}\)

The uniformly distributed parameter of the control points

\({\mathbf{R}}_{{\mathbf{i}}}\)

The initial data points

\({\mathbf{R}}_{{\mathbf{s}}}^{k}\)

The adjusted control points after the k-th iteration

\({\mathbf{R}}_{{\mathbf{h}}}^{k}\)

The fixed control points after the k-th iteration

\(\Delta _{{\mathbf{s}}}^{k}\)

The adjusting vectors after the k-th iteration

\(\Delta _{{\mathbf{h}}}^{k}\)

The difference vectors after the k-th iteration

B

The collocation matrix with uniformly distributed parameters

\({\mathbf{R}}^{k} ( \cdot )\)

The iterative B-B surface after the k-th iteration with LPIA method

\({\mathbf{R}}_{\omega }^{k} ( \cdot )\)

The iterative B-B surface after the k-th iteration with weighted LPIA method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Wang, J. & Liang, R. Weighted local progressive-iterative approximation property for triangular Bézier surfaces. Vis Comput 38, 3819–3830 (2022). https://doi.org/10.1007/s00371-021-02223-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02223-1

Keywords

Navigation