Skip to main content
Log in

K sparse autoencoder-based accelerated reconstruction of magnetic resonance imaging

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Owing to the sequential collection of phase encoded data in k-space, magnetic resonance (MR) imaging suffers from long acquisition time. One possible measure to reduce the long acquisition time is to reconstruct MR image using a subset of k-space MR data rather than the complete set. In this work, we propose to implement a K sparse autoencoder model for reconstruction of MR image from undersampled k-space data. Autoencoder models, which have shown great ability in capturing the complex features of input data, can be used to reconstruct high-quality MR image. The reconstruction process involved solving an optimization problem whose solution was expected to satisfy the data consistency and also lie in close proximity to the output space of trained K sparse autoencoder. Observing the effect of sparsity value enforced by K sparse autoencoder on the reconstructed output, we implemented the cascaded form of reconstruction, incorporating three K sparse autoencoders with three different K values. Using MR-PD and MR-T1 images, reconstruction performance of the proposed approach was compared with those of the conventional reconstruction approaches. The quantitative as well as the qualitative analysis of the reconstructed images, obtained using the proposed approach, validates the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liang, Z.-P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. SPIE Optical Engineering Press, Bellingham (2000)

    Google Scholar 

  2. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing mri. IEEE Signal Process. Mag. 25(2), 72 (2008)

    Article  Google Scholar 

  3. Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel mr imaging. J. Magn. Resonan. Imaging 36(1), 55–72 (2012)

    Article  Google Scholar 

  4. Donoho, D.L., et al.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  5. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2008)

    Article  Google Scholar 

  6. Li, X., Shen, H., Zhang, L., Zhang, H., Yuan, Q., Yang, G.: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(11), 7086–7098 (2014)

    Article  Google Scholar 

  7. Shen, H., Li, X., Zhang, L., Tao, D., Zeng, C.: Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse Bayesian dictionary learning. IEEE Transa. Geosci. Remote Sens. 52(2), 894–906 (2013)

    Article  Google Scholar 

  8. Jiang, C., Zhang, Q., Fan, R., Zhanli, H.: Super-resolution ct image reconstruction based on dictionary learning and sparse representation. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  9. Dufan, W., Kim, K., El Fakhri, G., Li, Q.: Iterative low-dose ct reconstruction with priors trained by artificial neural network. IEEE Trans. Med. Imaging 36(12), 2479–2486 (2017)

    Article  Google Scholar 

  10. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49 (2012)

  11. Makhzani, A., Frey, B.: K-Sparse Autoencoders. arXiv preprint arXiv:1312.5663 (2013)

  12. Guerquin-Kern, M., Van De Ville, D., Vonesch, Cédric, B., Pruessmann, J.-C., Klaas, P., Unser, M.: Wavelet-regularized reconstruction for rapid mri. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 193–196. IEEE (2009)

  13. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed mr imaging using total variation and wavelets. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

  14. Huang, J., Zhang, S., Metaxas, D.: Efficient mr image reconstruction for compressed mr imaging. Med. Image Anal. 15(5), 670–679 (2011)

    Article  Google Scholar 

  15. Huang, J., Yang, F.: Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 968–971. IEEE (2012)

  16. Huang, J., Wang, L., Zhu, Y.: Compressed sensing mri reconstruction with multiple sparsity constraints on radial sampling. Math. Probl. Eng. 2019 (2019)

  17. Zhu, Z., Yang, R., Zhang, J., Zhang, C.: Compressed sensing mri by two-dimensional wavelet filter banks. In: The 2011 International Workshop on Multidimensional (nD) Systems, pp. 1–6. IEEE (2011)

  18. Chen, S., Qiu, B., Zhao, F., Li, C., Du, H.: Fast compressed sensing mri based on complex double-density dual-tree discrete wavelet transform. Int. J. Biomed. Imaging (2017)

  19. Chen, C., Huang, J.: Compressive sensing MRI with wavelet tree sparsity. In: Advances in Neural Information Processing Systems, pp. 1115–1123 (2012)

  20. Qu, X., Guo, D., Chen, Z., Cai, C.: Compressed sensing mri based on nonsubsampled contourlet transform. In: 2008 IEEE International Symposium on IT in Medicine and Education, pp. 693–696. IEEE (2008)

  21. Xiaobo, Q., Zhang, W., Guo, D., Cai, C., Cai, S., Chen, Z.: Iterative thresholding compressed sensing mri based on contourlet transform. Inverse Probl. Sci. Eng. 18(6), 737–758 (2010)

    Article  MathSciNet  Google Scholar 

  22. Chen, Y., Ye, X., Huang, F.: A novel method and fast algorithm for mr image reconstruction with significantly under-sampled data. Inverse Probl. Imaging 4(2), 223–240 (2010)

    Article  MathSciNet  Google Scholar 

  23. Ravishankar, S., Bresler, Y.: Mr image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)

    Article  Google Scholar 

  24. Xiaobo, Q., Guo, D., Ning, B., Hou, Y., Lin, Y., Cai, S., Chen, Z.: Undersampled mri reconstruction with patch-based directional wavelets. Magn. Resonan. Imaging 30(7), 964–977 (2012)

    Article  Google Scholar 

  25. Xiaobo, Q., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)

    Article  Google Scholar 

  26. Lai, Zongying, Xiaobo, Qu, Liu, Yunsong, Guo, Di, Ye, Jing, Zhan, Zhifang, Chen, Zhong: Image reconstruction of compressed sensing mri using graph-based redundant wavelet transform. Medical image analysis 27, 93–104 (2016)

    Article  Google Scholar 

  27. Huang, J.-P., Zhu, L.-K., Wang, L.-H., Song, W.-L.: Compressed sensing mri using sparsity averaging and fista. Appl. Magn. Resonan. 48(8), 749–760 (2017)

    Article  Google Scholar 

  28. Ragab, M., Omer, O.A., Abdel-Nasser, M.: Compressive sensing mri reconstruction using empirical wavelet transform and grey wolf optimizer. Neural Comput. Appl. 32(7), 2705–2724 (2020)

    Article  Google Scholar 

  29. Fan X, Lian Q, Shi B: Compressed-sensing mri based on adaptive tight frame in gradient domain. Appl. Magn. Resonan. 49(5), 465–477 (2018)

    Article  Google Scholar 

  30. Liu, R.W., Yin, W., Shi, L., Duan, J., Yu, S.C.H., Wang, D.: Undersampled cs image reconstruction using nonconvex nonsmooth mixed constraints. Multimed. Tools Appl. 78(10), 12749–12782 (2019)

    Article  Google Scholar 

  31. Zhuang, P., Zhu, X., Ding, X.: Mri reconstruction with an edge-preserving filtering prior. Signal Process. 155, 346–357 (2019)

    Article  Google Scholar 

  32. IXI dataset. https://brain-development.org/ixi-dataset/

  33. Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: the application of compressed sensing for rapid mr imaging. Magn. Resonan. Med. Off. J. Int. Soc. Magn. Resonan. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  34. MICCAI 2013 dataset. http://masiweb.vuse.vanderbilt.edu/workshop2013/index.php/

  35. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J.R., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  36. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  37. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M. et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the Brats Challenge (2018). arXiv preprint arXiv:1811.02629

  38. Yang, G., Simiao, Y., Dong, H., Slabaugh, G., Dragotti, P.L., Ye, X., Liu, F., Arridge, S., Keegan, J., Guo, Y., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing mri reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Article  Google Scholar 

  39. Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F., Feng, D., Liang, D.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517. IEEE (2016)

  40. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for mr image reconstruction. In: International Conference on Information Processing in Medical Imaging, pp. 647–658. Springer (2017)

  41. Quan, T.M., Nguyen-Duc, T., Jeong, W.-K.: Compressed sensing mri reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is an outcome of the R&D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhengre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhengre, N., Sinha, S. K sparse autoencoder-based accelerated reconstruction of magnetic resonance imaging. Vis Comput 38, 837–847 (2022). https://doi.org/10.1007/s00371-020-02054-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02054-6

Keywords

Navigation