Skip to main content
Log in

Distortion-free image dehazing by superpixels and ensemble neural network

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Single image dehazing is a technique used to remove the effect of haze from an image captured in poor weather conditions. Due to the scattering of particles, a captured image suffers from low visibility and contrast. Besides, scattering also adds nonlinear noise to the captured image. Existing image dehazing methods improve the visibility of the hazy image. However, these methods significantly generate artifacts such as halo at the depth discontinuities, blocking, and color aliasing in the sky regions. Some methods addressed this problem, but these methods introduce other issues such as loss of details, blurring effects, and oversaturation in the dehazed image. This paper proposes a method using superpixels and ensemble nonlinear regression to estimate the transmission that improves the visibility of a hazy image without any artifact. Conventional machine learning methods require a vast amount of haze-free and hazy images of different haze concentrations to train the model. The use of superpixels offers less number of training examples and also helps in reducing halo artifacts. The ensemble nonlinear regression predicts the transmission for a superpixel in such a way that the recovered image looks more natural, especially in the sky regions. The proposed method is evaluated by the various distortion parameters on real-world challenging and synthetic hazy images. The qualitative and quantitative analysis in experimental results proves that the proposed method is superior to that of state-of-the-art dehazing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haze: Retrieved from: https://en.wikipedia.org/wiki/Haze

  2. Salazar-Colores, S., Cabal-Yepez, E., Ramos-Arreguin, J.M., Botella, G., Ledesma-Carrillo, L.M., Ledesma, S.: A fast image dehazing algorithm using morphological reconstruction. IEEE Trans. Image Process. 28(5), 2357–2366 (2019)

    Article  MathSciNet  Google Scholar 

  3. Singh, D., Kumar, V.: Comprehensive survey on haze removal techniques. Multimed. Tools Appl. 77(8), 9595–9620 (2018)

    Article  Google Scholar 

  4. Tan, R.: Visibility in bad weather from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1–8 (2008)

  5. Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 72 (2008)

    Article  Google Scholar 

  6. Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single-color or gray-level image. In: Proceedings of IEEE Conference on Computer Vision, pp. 2201–2208 (2009)

  7. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  8. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of IEEE International Conference on Computer Vision, pp. 617–624 (2013)

  9. Bui, T.M., Kim, W.: Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 27(2), 999–1009 (2018)

    Article  MathSciNet  Google Scholar 

  10. Zhu, Q.S., Mai, J.M., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, C., Do, M.N., Wang, J.: Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: Proceedings of European Conference on Computer Vision, pp. 576–591. Springer (2016)

  12. Li, Y., Guo, F., Tan, R.T., Brown, M.S.: A contrast enhancement framework with jpeg artifacts suppression. In: Proceedings of ECCV 2014: 13th European Conference, pp. 174–188 (2014)

  13. Salazar-Colores, S., Cruz-Aceves, I., Ramos-Arreguin, J.: Single image dehazing using a multilayer perceptron. J. Electron. Imaging 27(4), 043022 (2018)

    Article  Google Scholar 

  14. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet, an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  15. Berman, D., Avidan, S.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

  16. Fan, X., Wang, Y., Tang, X., Gao, R., Luo, Z.: Two-layer Gaussian process regression with example selection for image dehazing. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2505–2517 (2017)

    Article  Google Scholar 

  17. Dudhane, A., Murala, S.: RYF-Net: deep fusion network for single image haze removal. IEEE Trans. Image Process. 29, 628–640 (2020)

    Article  MathSciNet  Google Scholar 

  18. Qian, W., Zhou, C., Zhang, D.: FAOD-Net: a fast AOD-Net for dehazing single image. Math. Probl. Eng. 2020, Article ID 4945214 (2020)

  19. Cozman, F., Krotkov, E.: Depth from scattering. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 801–806. IEEE (1997)

  20. Zhang, H., Liu, Q., Yang, F., Wu, Y.: Single image dehazing combining physics model based and non-physics model based methods. J. Comput. Inf. Syst. 9(4), 1623–1631 (2013)

    Google Scholar 

  21. Raikwar, S.C., Tapaswi, S.: Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Trans. Image Process. 29, 4832–4847 (2020). https://doi.org/10.1109/TIP.2020.2975909

    Article  Google Scholar 

  22. Raikwar, S.C., Tapaswi, S.: Tight lower bound on transmission for single image dehazing. Vis. Comput. 36(1), 191–209 (2018)

    Article  Google Scholar 

  23. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 2995–3002 (2014)

  24. Engin, D., Genc, A., Ekenel, H.K.: Cycle-dehaze: enhanced cycle-GAN for single image dehazing. In: Proceedings of IEEE/CVF Conference on Computer Vision Pattern Recognition Workshops (CVPRW), pp. 825–833 (2018)

  25. Santra, S., Mondal, R., Chanda, B.: Learning a patch quality comparator for single image dehazing. IEEE Trans. Image Process. 27(9), 4598–4607 (2018)

    Article  MathSciNet  Google Scholar 

  26. Ren, W., et al.: Deep video dehazing with semantic segmentation. IEEE Trans. Image Process. 28(4), 1895–1908 (2019). https://doi.org/10.1109/TIP.2018.2876178

    Article  MathSciNet  Google Scholar 

  27. Ren, W., Pan, J., Zhang, H., et al.: Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int. J. Comput. Vis. 128, 240–259 (2020)

    Article  Google Scholar 

  28. Zhang, S., He, F., Ren, W., et al.: Joint learning of image detail and transmission map for single image dehazing. Vis. Comput. 36, 305–316 (2020)

    Article  Google Scholar 

  29. Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2417–2424 (2014)

  30. den Bergh, M.V., Carton, D., van Gool, L.: Depth SEEDS: recovering incomplete depth data using superpixels. In: Proceedings of Winter Conference on Applications of Computer Vision, pp. 363–368 (2013)

  31. Lerma, C.D.C., Kosecka, J.: Semantic segmentation with heterogeneous sensor coverages. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2639–2645 (2014)

  32. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  33. Ren, X., Malik, J.: Normalized cut: learning a classification model for segmentation. In: International Conference on Computer Vision (2003)

  34. Tang, D., Fu, H., Cao, X.: Topology preserved regular superpixel. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 765–768 (2012)

  35. Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single image. In: Proceedings of 10th Asian Conference on Computer Vision, pp. 501–514 (2011)

  36. Ancuti, C., Ancuti, C.O., De Vleeschouwer, C.: D-HAZY: a dataset to evaluate quantitatively dehazing algorithms. In: Proceedings of IEEE International Conference on Image Processing, pp. 2226–2230 (2016)

  37. Amini, K., Rostami, F.: A modified two steps Levenberg–Marquardt method for nonlinear equations. J. Comput. Appl. Math. 288, 341–350 (2015)

    Article  MathSciNet  Google Scholar 

  38. Krogh, A., Vedelsby, J.: Neural network ensembles cross validation, and active learning. In: Advances in Neural Information Processing Systems, vol. 7. MIT Press (1995)

  39. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  40. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  41. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

    Article  Google Scholar 

  42. Wang, W., Yuan, X., Wu, X., Liu, Y.: Fast image dehazing method based on linear transformation. IEEE Trans. Multimed. 19(6), 1142–1155 (2017)

    Article  Google Scholar 

  43. Ma, K., Liu, W., Wang, Z.: Perceptual evaluation of single image dehazing algorithms. In Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 3600–3604 (2015)

  44. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2019)

    Article  MathSciNet  Google Scholar 

  45. Kumar, R., Kaushik, B.K., Balasubramanian, R.: Multispectral transmission map fusion method and architecture for image dehazing. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27(11), 2693–2697 (2019)

    Article  Google Scholar 

  46. Kumar, R., Balasubramanian, R., Kaushik, B.K.: Efficient method and architecture for real-time video defogging. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.2993906

    Article  Google Scholar 

  47. Crete, F., Dolmiere, T., Ladret, P., Nicolas, M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. Proc. SPIE 6492, 64920I (2007)

    Article  Google Scholar 

  48. Zhan, Y., Zhang, R.: No-reference JPEG image quality assessment based on blockiness and luminance change. IEEE Signal Process. Lett. 24(6), 760–764 (2017)

    Article  Google Scholar 

  49. Hautière, N., Tarel, J.-P., Aubert, D., Dumont, É.: Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. J. 27(2), 87–95 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chand Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S.C., Jalal, A.S. Distortion-free image dehazing by superpixels and ensemble neural network. Vis Comput 38, 781–796 (2022). https://doi.org/10.1007/s00371-020-02049-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02049-3

Keywords

Navigation