Rehman, B., Ong, W.H., Tan, A.C.H., et al.: Face detection and tracking using hybrid margin-based ROI techniques. Vis. Comput. 36(3), 633–647 (2020)
Article
Google Scholar
Li, Z., Yu, X., Li, P., Hashem, M.: Moving object tracking based on multi-independent features distribution fields with comprehensive spatial feature similarity. Vis. Comput. 31(12), 1633–1651 (2015)
Article
Google Scholar
Camgoz, N. C., Hadfield, S., Koller, O., Bowden, R.: Using convolutional 3d neural networks for user-independent continuous gesture recognition. In: 23rd International Conference on Pattern Recognition (ICPR), pp. 49–54 (2016)
Wang, Y., Hu, S., Wu, S.: Object tracking based on huber loss function. Vis. Comput. 35(11), 1641–1654 (2019)
Article
Google Scholar
Rasekhipour, Y., Khajepour, A., Chen, S.K., Litkouhi, B.: A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Trans. Intell. Transp. Syst. 18(5), 1255–1267 (2016)
Article
Google Scholar
Choi, W., Savarese, S.: A unified framework for multi-target tracking and collective activity recognition. In: European Conference on Computer Vision, pp. 215–230 (2012)
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust tracking-by-detection using a detector confidence particle filter. In: 12th IEEE International Conference on Computer Vision, pp. 1515–1522 (2009)
Zhang, H., Liu, G.: Coupled-layer based visual tracking via adaptive kernelized correlation filters. Vis. Comput. 34(1), 41–54 (2018)
MathSciNet
Article
Google Scholar
Fazl-Ersi, E., Nooghabi, M.K.: Revisiting correlation-based filters for low-resolution and long-term visual tracking. Vis. Comput. 35(10), 1447–1459 (2019)
Article
Google Scholar
Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 58–72 (2013)
Article
Google Scholar
Qin, Z., Shelton, C.R.: Improving multi-target tracking via social grouping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1972–1978 (2012)
Xiang, Y., Alahi, A., Savarese, S.: Learning to track: online multi-object tracking by decision making. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4705–4713 (2015)
Zhang, L., Van Der Maaten, L.: Preserving structure in model-free tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 756–769 (2013)
Article
Google Scholar
Izadinia, H., Saleemi, I., Li, W., Shah, M.: 2T: multiple people multiple parts tracker. In: European Conference on Computer Vision, Springer, Berlin, pp. 100–114 (2012)
Butt, A.A., Collins, R.T.: Multi-target tracking by lagrangian relaxation to min-cost network flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1846–1853 (2013)
Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., Yan, J.: Poi: multiple object tracking with high performance detection and appearance feature. In: European Conference on Computer Vision, Springer, Berlin, pp. 36–42 (2016)
Guan, H., Cheng, B.: How do deep convolutional features affect tracking performance: an experimental study. Vis. Comput. 34(12), 1701–1711 (2018)
Article
Google Scholar
Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31(4), 471–484 (2015)
Article
Google Scholar
Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., Schindler, K.: Online multi-target tracking using recurrent neural networks. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Yoon, K., Kim, D.Y., Yoon, Y.C., Jeon, M.: Data association for multi-object tracking via deep neural networks. Sensors 19(3), 559 (2019)
Article
Google Scholar
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: IEEE International Conference on Image Processing (ICIP), pp. 3464–3468 (2016)
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: IEEE International Conference on Image Processing (ICIP), pp. 3645–3649 (2017)
Yoon, Y.C., Song, Y.M., Yoon, K., Jeon, M.: Online multi-object tracking using selective deep appearance matching. In: IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), pp. 206–212 (2018)
Xu, J., Cao, Y., Zhang, Z., Hu, H.: Spatial-temporal relation networks for multi-object tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3988–3998 (2019)
Mahmoudi, N., Ahadi, S.M., Rahmati, M.: Multi-target tracking using CNN-based features: CNNMTT. Multimed. Tools Appl. 78(6), 7077–7096 (2019)
Article
Google Scholar
Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., Yu, N.: Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4836–4845 (2017)
Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: learning to track multiple cues with long-term dependencies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 300–311 (2017)
Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., Yang, M.H.: Online multi-object tracking with dual matching attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 366–382 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv Prepr. arXiv:1703.07737. (2017)
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: Motchallenge 2015: Towards a benchmark for multi-target tracking (2015). arXiv Prepr. arXiv:1504.01942
Sanchez-Matilla, R., Poiesi, F., Cavallaro, A.: Online multi-target tracking with strong and weak detections. In: European Conference on Computer Vision, pp. 84–99 (2016)
Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: European Conference on Computer Vision, pp. 17–35 (2016)
Fang, K., Xiang, Y., Li, X., Savarese, S.: Recurrent autoregressive networks for online multi-object tracking. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 466–475 (2018)
Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017)
Yoon, Y.C., Boragule, A., Song, Y.M., Yoon, K., Jeon, M.: Online multi-object tracking with historical appearance matching and scene adaptive detection filtering. In: 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2018)
Boragule, A., Jeon, M.: Joint cost minimization for multi-object tracking. In: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017)
Anh, N.T.L., Khan, F.M., Negin, F., Bremond, F.: Multi-object tracking using multi-channel part appearance representation. In: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017)