Skip to main content
Log in

Estimating the fractal dimension of images using pixel range calculation technique

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, our main purpose is to demonstrate a new box counting method called ‘pixel range calculation (PRC) method’ to carry out image analysis to discover its smoothness or roughness. In the proposed method, we have mainly focused on the pixel intensity and their ranges so that it will give the appropriate gray-level count covered by each box. By getting the appropriate box count, we can measure the level of roughness or smoothness of various images. Lena and Baboon image of 64 × 64 pixels and then images with resolution of 256 × 256 pixels of Female, Areal, Moon surface, House, Tree, Female2 and Jelly Bean image have been taken for carrying out the experiment. The experiment was conducted using some of the existing methods available in the literature and the proposed method on the images mentioned, to verify the applicability and accuracy of the proposed method. The result of the experiment based on the box count shows that the proposed method is giving better result in terms of efficiency and accuracy as compared to other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982). https://doi.org/10.1002/esp.3290080415

    Book  MATH  Google Scholar 

  2. Peitgen, H.O., Jurgens, H., Saupe, D.: Chaos and Fractals, New Frontiers of Science, 1st edn. Springer, Berlin (1992). https://doi.org/10.1007/978-0-387-21823-6

    Book  MATH  Google Scholar 

  3. Harrington, S.: Computer Graphics: A Programming Approach, 2nd edn, pp. 109–112. McGraw-Hill, New York (1987)

    Google Scholar 

  4. Quan, Y., Xu, Y., Sun, Y., Luo, Y.: Lacunarity analysis on image patterns for texture classification. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, pp. 160–167 (2014). https://doi.org/10.1109/cvpr.2014.28

  5. Quan, Y., Xu, Y., Sun, Y.: A distinct and compact texture descriptor. Image Vis. Comput. 32(4), 250–259 (2014). https://doi.org/10.1016/j.imavis.2014.02.004

    Article  Google Scholar 

  6. Quan, Y., Sun, Y., Xu, Y.: Spatiotemporal lacunarity spectrum for dynamic texture classification. Comput. Vis. Image Underst. 165, 85–96 (2017). https://doi.org/10.1016/j.cviu.2017.10.008

    Article  Google Scholar 

  7. Xu, Y., Quan, Y., Ling, H., Ji, H.: Dynamic texture classification using dynamic fractal analysis. In: International Conference on Computer Vision, Barcelona, pp. 1219–1226 (2011). https://doi.org/10.1109/iccv.2011.6126372

  8. Dong, Y., Feng, J., Yang, C., Wang, X., Zheng, L., Pu, J.: Multi-scale counting and difference representation for texture classification. Vis. Comput. 34(10), 1315–1324 (2017). https://doi.org/10.1007/s00371-017-1415-4

    Article  Google Scholar 

  9. Liu, C., Shao, H., Wu, M., Zhou, Y., Shao, Y., Wang, X.: Multi-scale inherent variation features-based texture filtering. Vis. Comput. 33(6–8), 769–778 (2017). https://doi.org/10.1007/s00371-017-1380-y

    Article  Google Scholar 

  10. Amirolad, A., Arashloo, S.R., Amirani, M.C.: Multi-layer local energy patterns for texture representation and classification. Vis. Comput. 32(12), 1633–1644 (2016). https://doi.org/10.1007/s00371-016-1220-5

    Article  Google Scholar 

  11. Khmag, A., Ramli, A.R., Al-haddad, S.A.R., Kamarudin, N.: Natural image noise level estimation based on local statistics for blind noise reduction. Vis. Comput. 34(4), 575–587 (2017). https://doi.org/10.1007/s00371-017-1362-0

    Article  Google Scholar 

  12. Chaudhuri, B.B., Sarkar, N.: Texture segmentation using fractal dimension. IEEE Trans. Pattern Anal. Mach. Intell. 17, 72–77 (1995). https://doi.org/10.1109/34.368149

    Article  Google Scholar 

  13. Sarkar, N., Chaudhuri, B.B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 24, 115–120 (1994). https://doi.org/10.1109/21.259692

    Article  Google Scholar 

  14. Bisoi, A.K., Mishra, J.: On calculation of fractal dimension of images. Pattern Recogn. Lett. 22, 631–637 (2001). https://doi.org/10.1016/s0167-8655(00)00132-x

    Article  MATH  Google Scholar 

  15. Pentland, A.P.: Shading into texture. Artif. Intell. 29, 147–170 (1986). https://doi.org/10.1016/0004-3702(86)90017-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Keller, J., Crownover, R., Chen, S.: Texture description and segmentation through fractal geometry. Comput. Vis. Graph. Image Process. 45, 150–160 (1989). https://doi.org/10.1016/0734-189x(89)90130-8

    Article  Google Scholar 

  17. Voss, R.: Characterization and measurement. In: Random Fractals, pp. 1–11. Plenum, New York (1986). https://doi.org/10.1007/978-1-4757-1402-9_1

  18. Liu, S., Chang, S.: Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Trans. Image Process. 6, 1176–1184 (1997). https://doi.org/10.1109/83.605414

    Article  Google Scholar 

  19. Ranganath, A., Mishra, J.: New approach for estimating fractal dimension of both gary and color images. In: IEEE 7th International Advance Computing Conference (IACC), Hyderabad, pp. 678–683 (2017). https://doi.org/10.1109/iacc.2017.0142

  20. Faraji, M.R., Qi, X.: Face recognition under varying illuminations using logarithmic fractal dimension-based complete eight local directional patterns. Neuro Comput. (2016). https://doi.org/10.1016/j.neucom.2016.01.094

    Article  Google Scholar 

  21. Faraji, M.R., Qi, X.: Face recognition under varying illumination with logarithmic fractal analysis. IEEE Signal Process. Lett. 21(12), 1457–1461 (2014). https://doi.org/10.1109/lsp.2014.2343213

    Article  Google Scholar 

  22. Peitgen, H.O., Saupe, D.: The Sciences of Fractal Images. Springer, New York (1988). https://doi.org/10.1007/978-1-4612-3784-6_2

    Book  Google Scholar 

  23. Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikäinen, M.: From BoW to CNN: two decades of texture representation for texture classification. Int. J. Comput. Vis. 127, 74–109 (2018). https://doi.org/10.1007/s11263-018-1125-z

    Article  Google Scholar 

  24. Lin, K.H., Lam, K.M., Siu, W.C.: Locating the eye in human face images using fractal dimensions. IEEE Proc. Vis. Image Signal Process. 148, 413–421 (2001). https://doi.org/10.1049/ip-vis:20010709

    Article  Google Scholar 

  25. Ivanovici, M., Richard, N.: Fractal dimension of color fractal images. IEEE Trans. Image Process. 20(1), 227–235 (2011). https://doi.org/10.1109/tip.2010.2059032

    Article  MathSciNet  MATH  Google Scholar 

  26. Gagnepain, J., Roques Carmes, C.: Fractal approach to two dimensional and three dimensional surface roughness. Wear 109, 119–126 (1986). https://doi.org/10.1016/0043-1648(86)90257-7

    Article  Google Scholar 

  27. Dash, S., Senapati, M.R.: Gray Level run Length Matrix Based on Various Illumination Normalization Techniques For Texture Classification, Evolutionary Intelligence, pp. 1–10. Springer, Berlin (2018). https://doi.org/10.1007/s12065-018-0164-2

    Book  Google Scholar 

  28. Dash, S., Senapati, M.R., Jena, U.R.: K-NN based automated reasoning using bilateral filter based texture descriptor for computing texture classification. Egypt. Inform. J. 19(2), 133–144 (2018). https://doi.org/10.1016/j.eij.2018.01.003

    Article  Google Scholar 

  29. Xu, Y., Liu, D., Quan, Y., Le Callet, P.: Fractal analysis for reduced reference image quality assessment. IEEE Trans. Image Process. 24(7), 2098–2109 (2015). https://doi.org/10.1109/tip.2015.2413298

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J., Kuo, C.C.J.: Image compression with a hybrid wavelet-fractal coder. IEEE Trans. Image Process. 8(6), 868–874 (1999). https://doi.org/10.1109/83.766863

    Article  Google Scholar 

  31. Khoury, M., Wenger, R.: On the fractal dimension of isosurfaces. IEEE Trans. Vis. Comput. Graph. 16(6), 1198–1205 (2010). https://doi.org/10.1109/tvcg.2010.18

    Article  Google Scholar 

  32. Dirnberger, A., Kovaleski, S.D., Norgard, P., Mededovic, T.S., Franclemont, J.: In-liquid streamer characterization and fractal analysis. IEEE Trans. Plasma Sci. 46(7), 2550–2557 (2018). https://doi.org/10.1109/tps.2017.2778710

    Article  Google Scholar 

  33. Ghazel, M., Freeman, G.H., Vrscay, E.R.: Fractal image denoising. IEEE Trans. Image Process. 12(12), 1560–1578 (2003). https://doi.org/10.1109/tip.2003.818038

    Article  Google Scholar 

  34. Caballero, D., Antequera, T., Caro, A., Amigo, J.M., ErsbØll, B.K., Dahl, A.B., Pérez-Palacios, T.: Analysis of MRI by fractals for prediction of sensory attributes, a case study in loin. J. Food Eng. 227, 1–10 (2018). https://doi.org/10.1016/j.jfoodeng.2018.02.005

    Article  Google Scholar 

  35. Yang, L., Tang, Y.Y., Lu, Y., Luo, H.: A fractal dimension and wavelet transform based method for protein sequence similarity analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(2), 348–359 (2015). https://doi.org/10.1109/tcbb.2014.2363480

    Article  Google Scholar 

  36. Senapati, M.R., Dash, P.K.: Intelligent system based on local linear wavelet neural network and recursive least square approach for breast cancer classification. Artif. Intell. Rev. 39(2), 151–163 (2013). https://doi.org/10.1007/s10462-011-9263-5

    Article  Google Scholar 

  37. http://www.bilsen.com/aic/tests/lena64/lena64.shtml. Accessed 1 July 2018

  38. http://sipi.usc.edu/database/database.php?volume=misc&image=10#top. Accessed 1 July 2018

  39. http://sipi.usc.edu/database/database.php?volume=misc&image=1#top. Accessed 1 July 2018

  40. http://sipi.usc.edu/database/database.php?volume=misc&image=15#top. Accessed 1 July 2018

  41. http://sipi.usc.edu/database/database.php?volume=misc&image=14#top. Accessed 1 July 2018

  42. http://sipi.usc.edu/database/database.php?volume=misc&image=5#top. Accessed 1 July 2018

  43. http://sipi.usc.edu/database/database.php?volume=misc&image=6#top. Accessed 1 July 2018

  44. http://sipi.usc.edu/database/database.php?volume=misc&image=3#top. Accessed 1 July 2018

  45. http://sipi.usc.edu/database/database.php?volume=misc&image=7#top. Accessed 1 July 2018

Download references

Acknowledgements

The authors acknowledge the support given by Veer Surendra Sai University of Technology, India, under TEQIP-III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ranjan Senapati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganath, A., Senapati, M.R. & Sahu, P.K. Estimating the fractal dimension of images using pixel range calculation technique. Vis Comput 37, 635–650 (2021). https://doi.org/10.1007/s00371-020-01829-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01829-1

Keywords

Navigation