Adan, A., Huber, D.: 3D reconstruction of interior wall surfaces under occlusion and clutter. In: Proceedings Symposium on 3D Data Processing, Visualization, and Transmission, pp. 275–281 (2011)
Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 31, 325–337 (2013)
Article
Google Scholar
Mura, C., Mattausch, O., Villanueva, A.J., Gobbetti, E., Pajarola, R.: Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts. Comput. Graph. 44, 20–32 (2014)
Article
Google Scholar
Oesau, S., Lafarge, F., Alliez, P.: Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut. ISPRS J. Photogramm. Remote Sens. 90, 68–82 (2014)
Article
Google Scholar
Previtali, M., Scaioni, M., Barazzetti, L., Brumana, R.: A flexible methodology for outdoor/indoor building reconstruction from occluded point clouds. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci., II(3), 119–126, 08 (2014)
Stambler, A., Huber, D.: Building modeling through enclosure reasoning. In: Proceedings International Conference on 3D Computer Vision, Workshop on 3D Computer Vision in the Built Environment, pp. 118–125 (2014)
Ochmann, S., Vock, R., Wessel, R., Klein, R.: Automatic reconstruction of parametric building models from indoor point clouds. Comput. Graph. 54, 94–103 (2016)
Article
Google Scholar
Mura, C., Mattausch, O., Pajarola, R.: Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements. Comput. Graph. Forum 35(7), 179–188 (2016)
Article
Google Scholar
Ambrus, R., Claici, S., Wendt, A.: Automatic room segmentation from unstructured 3D data of indoor environments. IEEE Robot. Autom. Lett. 2(2), 749–756 (2017)
Article
Google Scholar
Michailidis, G.-T., Pajarola, R. : Automatic reconstruction of wall features under clutter and occlusion. In: In Proceedings Computer Graphics International (2015)
Michailidis, G.-T., Pajarola, R.: Bayesian graph-cut optimization for wall surfaces reconstruction in indoor environments. Vis. Comput. 33(10), 1347–1355 (2017)
Article
Google Scholar
Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., Guo, B.: An interactive approach to semantic modeling of indoor scenes with an RGBD camera. ACM Trans. Graph. 31, 136:1–136:11 (2012)
Google Scholar
Armeni, I., Sener, O., Zamir, A.R, Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings IEEE International Conference on Computer Vision and Pattern Recognition (2016)
Tchapmi, L.P., Choy, C., Armeni, I., Gwak, J.Y., Savarese, S.: SEGCloud: Semantic segmentation of 3D point clouds. In: International Conference of 3D Vision (2017)
Sanchez, V., Zakhor, A.: Planar 3D modeling of building interiors from point cloud data. In: Proceedings IEEE International Conference on Image Processing, pp. 1777 – 1780 (2012)
Nikoohemat, S., Peter, M., Elberink, S.O., Vosselman, G.: Exploiting indoor mobile laser scanner trajectories for semantic interpretation of point clouds. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. IV(2/W4), 355–362 (2017)
Article
Google Scholar
Boehler, W., Marbs, A.: Investigating laser scanner accuracy. Technical report, German University FH Mainz (2003)
Adan, A., Galera, B.Q., Vazquez, A., Olivares, A., Parra, E., Prieto, S.: Towards the automatic scanning of indoors with robots. Sensors 15(5), 11551–11574 (2015)
Article
Google Scholar
Chen, J., Fang, Y., Cho, Y.: Unsupervised recognition of volumetric structural components from building point clouds. In: Proceedings International Workshop on Computing in Civil Engineering, pp. 34–42 (2017)
Elseberg, J., Magnenat, S., Siegwart, R., Nüchter, A.: Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. J. Softw. Eng. Robot. 3, 2–12 (2012)
Google Scholar
Diggle, P.J.: Statistical Analysis of Spatial Point Patterns, 2nd edn. Edward Arnold, London (2003)
MATH
Google Scholar
Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, Hoboken (2009)
Book
MATH
Google Scholar
An, L., Ahmed, S.E.: Improving the performance of kurtosis estimator. Comput. Stat. Data Anal. 52(5), 2669–2681 (2008)
MathSciNet
Article
MATH
Google Scholar
Lu, C.-T., Chen, D., Kou, Y.: Algorithms for spatial outlier detection. In: Proceedings IEEE International Conference on Data Mining, pp. 597–601 (2003)
Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88(424), 1273–1283 (1993)
MathSciNet
Article
MATH
Google Scholar
Pearson, R.K.: Exploring process data. J. Process Control 11(2), 179–194 (2001)
Article
Google Scholar
Pearson, R.K.: Outliers in process modeling and identification. IEEE Trans. Control Syst. Technol. 10(1), 55–63 (2002)
Article
Google Scholar
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
MATH
Google Scholar
Güngör, E., Özmen, A.: Distance and density based clustering algorithm using gaussian kernel. Expert Syst. Appl. 69, 10–20 (2017)
Article
Google Scholar
Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994)
MathSciNet
Article
MATH
Google Scholar
Ahn, S.J., Rauh, W., Warnecke, H.-J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognit. 34(12), 2283–2303 (2001)
Article
MATH
Google Scholar
Calafiore, G.: Approximation of n-dimensional data using spherical and ellipsoidal primitives. IEEE Trans. Syst. Man Cybern. 32(2), 269–278 (2002)
Article
Google Scholar
Yu, J., Haipeng, Z., Kulkarni, S.R., Poor, H.V.: Two-stage outlier elimination for robust curve and surface fitting. EURASIP J. Adv. Signal Process. (2010)
Nurunnabi, A., Sadahiro, Y., Lindenbergh, R.: Robust cylinder fitting in three-dimensional point cloud data. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. XLII(1/W1), 63–70 (2017)
Article
Google Scholar
Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: European Conference on Computer Vision Workshop on statistical learning in computer vision, pp. 17–32 (2004)
Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2188–2202 (2011)
Article
Google Scholar
Woodford, O.J., Pham, M.-T., Maki, A., Perbet, F., Stenger, B.: Demisting the hough transform for 3D shape recognition and registration. Int. J. Comput. Vis. 106(3), 332–341 (2014)
Article
Google Scholar
Ikehata, S., Yan, H., Furukawa, Y.: Structured indoor modeling. In: Proceedings IEEE International Conference on Computer Vision (2015)