Advertisement

The Visual Computer

, Volume 35, Issue 6–8, pp 921–933 | Cite as

Minkowski sum computation for planar freeform geometric models using \(G^1\)-biarc approximation and interior disk culling

  • Sangjun Han
  • Seung-Hyun Yoon
  • Myung-Soo KimEmail author
  • Gershon Elber
Original Article
  • 75 Downloads

Abstract

We present an efficient algorithm for computing the Minkowski sum of two planar geometric models bounded by B-spline curves. The boundary curves are first approximated by \(G^1\)-biarc splines within a given error bound \(\epsilon > 0\). A superset of Minkowski sum boundary is then generated using the biarc approximations. For non-convex models, the superset contains redundant arcs. An efficient and robust elimination of the redundancies is the main challenge of Minkowski sum computation. For this purpose, we use the Minkowski sum of interior disks of the two input models, which are again disks in the Minkowski sum interior. The majority of redundant arcs are eliminated by testing each against a small number of interior disks selected for efficiency. From the planar arrangement of remaining arcs, we construct the Minkowski sum boundary in a correct topology. We demonstrate a real-time performance and the stability of circle-based Minkowski sum computation using a large set of test data.

Keywords

Minkowski sum B-spline curves Biarc splines Interior disks Trimming 

Notes

Funding

This study was funded by the MSIT/IITP of Korea (No. 2017-0-00367), by the National Research Foundation of Korea (No. NRF-2018R1D1A1B07048036 and NRF-2019R1A2C1003490), and by the ISRAEL SCIENCE FOUNDATION (Grant No. 597/18).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F., Hackl, T., Jüttler, B., Oberneder, M., Sir, Z.: Computational and structural advantages of circular boundary representation. In: Dehne, F., Sack, J.R., Zeh, N. (eds.) Algorithms and Data Structures. Springer LNCS, pp. 374–385 (2007)Google Scholar
  2. 2.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Oberneder, M., Jüttler, B.: Medial axis computation for planar free-form shapes. Comput. Aided Des. 41(5), 339–349 (2009)CrossRefGoogle Scholar
  3. 3.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Pilgerstorfer, E., Rabl, M.: Divide-and-conquer for Voronoi diagrams revisited. Comput. Geom. Theory Appl. 43(8), 688–699 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akenine-Möller, T., Hains, E., Hoffman, N., Pesce, A., Iwanicki, M., Hillaire, S.: Real-Time Rendering, 4th edn. CRC Press, Boca Raton (2018)CrossRefGoogle Scholar
  5. 5.
    Bajaj, C., Kim, M.-S.: Generation of configuration space obstacles: the case of moving algebraic curves. Algorithmica 4(1–4), 157–172 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bajaj, C., Kim, M.-S.: Generation of configuration space obstacles: the case of moving algebraic surfaces. Int. J. Robot. Res. 9(1), 92–112 (1990)CrossRefGoogle Scholar
  7. 7.
    Campen, M., Kobbelt, L.: Polygonal boundary evaluation of Minkowski sums and swept volumes. Comput. Graph. Forum 29, 1613–1622 (2010)CrossRefGoogle Scholar
  8. 8.
    Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: Proceedings of ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, June, pp. 4–8 (2001)Google Scholar
  9. 9.
    Elber, G., Grandine, T.: Hausdorff and minimal distances between parametric freeforms in \(R^2\) and \(R^3\). In: Chen, F., Jüttler, B. (eds.) Proceedings of Advances in Geometric Modeling and Processing GMP 2008, Hangzhou, China, April 23–25. LNCS 4975. Springer, pp. 191–204 (2008)Google Scholar
  10. 10.
    Ghosh, P.: A mathematical model for shape description using Minkowski operators. Comput. Vis. Graph. Image Process. 44(3), 239–269 (1988)CrossRefGoogle Scholar
  11. 11.
    Ghosh, P.: A unified computational framework for Minkowski operations. Comput. Graph. 17(4), 357–378 (1993)CrossRefGoogle Scholar
  12. 12.
    Guibas, L., Ramshaw, L., Stolfi, J.: A kinetic framework for computer geometry. In: Proceedings of 24th Annual Symposium on Foundations of Computer Science, pp. 100–111 (1983)Google Scholar
  13. 13.
    Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces. Algorithmica 55(2), 329–345 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kaul, A., Farouki, R.: Computing Minkowski sums of plane curves. Int. J. Comput. Geom. Appl. 5(4), 413–432 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, Y.-J., Oh, Y.-T., Yoon, S.-H., Kim, M.-S., Elber, G.: Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer. Vis. Comput. 26(6–8), 1007–1016 (2010)CrossRefGoogle Scholar
  16. 16.
    Kim, Y.-J., Lee, J., Kim, M.-S., Elber, G.: Efficient offset trimming for planar rational curves using biarc trees. Comput. Aided Geom. Des. 29(7), 555–564 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kohler, M., Spreng, M.: Fast computation of the C-space of convex 2D algebraic objects. Int. J. Robot. Res. 14(6), 590–608 (1995)CrossRefGoogle Scholar
  18. 18.
    Kyung, M.-H., Sacks, E., Milenkovic, V.: Robust polyhedral Minkowski sums with GPU implementation. Comput. Aided Des. 67–68, 48–57 (2015)CrossRefGoogle Scholar
  19. 19.
    Latombe, J.-C.: Robot Motion Planning, vol. 124. Springer, Berlin (2012)Google Scholar
  20. 20.
    Lee, I.-K., Kim, M.-S., Elber, G.: Polynomial/rational approximation of minkowski sum boundary curves. Graph. Models Image Process. 60(2), 136–165 (1998)CrossRefGoogle Scholar
  21. 21.
    Lee, J., Kim, Y.-J., Kim, M.-S., Elber, G.: Efficient offset trimming for deformable planar curves using a dynamic hierarchy of bounding circular arcs. Comput. Aided Des. 58, 248–255 (2015)CrossRefGoogle Scholar
  22. 22.
    Lee, J., Kim, Y.-J., Kim, M.-S., Elber, G.: Comparison of three bounding regions with cubic convergence to planar freeform curves. Vis. Comput. 31(6–8), 809–818 (2015)CrossRefGoogle Scholar
  23. 23.
    Lee, J., Kim, Y.-J., Kim, M.-S., Elber, G.: Efficient Voronoi diagram construction for planar freeform spiral curves. Comput. Aided Geom. Des. 43, 131–142 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Leung, Y.-S., Wang, C.C., Chen, Y.: GPU-based super-union for Minkowski sum. Comput. Aided Des. Appl. 10(3), 475–487 (2013)CrossRefGoogle Scholar
  25. 25.
    Li, W., McMains, S.: Voxelized Minkowski sum computation on the GPU with robust culling. Comput. Aided Des. 43(10), 1270–1283 (2011)CrossRefGoogle Scholar
  26. 26.
    Li, W., McMains, S.: A sweep and translate algorithm for computing voxelized 3D Minkowski sums on the GPU. Comput. Aided Des. 46, 90–100 (2014)CrossRefGoogle Scholar
  27. 27.
    Lien, J.-M.: Covering Minkowski sum boundary using points with applications. Comput. Aided Geom. Des. 25(8), 652–666 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lien, J.-M.: A simple method for computing Minkowski sum boundary in 3D using collision detection. Algorithm. Found. Robot. VIII, 401–415 (2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  30. 30.
    Lozano-Pérez, T.: Spatial planning: a configuration space approach. IEEE Trans. Comput. 32(2), 108–120 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Meek, D., Walton, D.: Approximating smooth planar curves by arc splines. J. Comput. Appl. Math. 59(2), 221–231 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Meek, D., Walton, D.: Spiral arc spline approximation to a planar spiral. J. Comput. Appl. Math. 107, 21–30 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mizrahi, J., Kim, S., Hanniel, I., Kim, M.-S., Elber, G.: Minkowski sum computation of B-spline surfaces. Graph. Models 91, 30–38 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mühlthaler, H., Pottmann, H.: Computing the Minkowski sum of ruled surfaces. Graph. Models 65(6), 369–384 (2003)CrossRefzbMATHGoogle Scholar
  35. 35.
    Pasko, A., Okunev, O., Savchenko, V.: Minkowski sums of point sets defined by inequalities. Comput. Math. Appl. 45(10), 1479–1487 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Peternell, M., Steiner, T.: Minkowski sum boundary surfaces of 3D-objects. Graph. Models 69(3–4), 180–190 (2007)CrossRefGoogle Scholar
  37. 37.
    Sederberg, T.W., White, S.C., Zundel, A.K.: Fat arcs: a bounding region with cubic convergence. Comput. Aided Geom. Des. 6(3), 205–218 (1989)CrossRefzbMATHGoogle Scholar
  38. 38.
    Seong, J.-K., Kim, M.-S., Sugihara, K.: The Minkowski sum of two simple surfaces generated by slope-monotone closed curves. In: Proceedings of Geometric Modeling and Processing, 2002. IEEE, pp. 33–42 (2002)Google Scholar
  39. 39.
    Sir, Z., Feichtinger, R., Jüttler, B.: Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics. Comput. Aided Des. 38(6), 608–618 (2006)CrossRefGoogle Scholar
  40. 40.
    Varadhan, G., Manocha, D.: Accurate Minkowski sum approximation of polyhedral models. Graph. Models 68(4), 343–355 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sangjun Han
    • 1
  • Seung-Hyun Yoon
    • 2
  • Myung-Soo Kim
    • 3
    Email author
  • Gershon Elber
    • 4
  1. 1.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Multimedia EngineeringDongguk UniversitySeoulKorea
  3. 3.Department of Computer Science and EngineeringSeoul National UniversitySeoulKorea
  4. 4.Computer Science DepartmentTechnion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations