Skip to main content
Log in

Dynamic texture recognition using local tetra pattern—three orthogonal planes (LTrP-TOP)

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Dynamic texture (DT) is the annexation of an altering series of images where temporal regularity is present. Characterization, classification and identification of DTs have been investigated by many researchers in the past 2 decades. Especially, several image texture descriptors based on local binary pattern (LBP) have been enhanced for DT classification in the spatiotemporal domain. Local tetra pattern (LTrP) is an extension of LBP in which the calculation of the feature code depends on the referenced central pixel as well as its neighbor’s directions. In this work, we have proposed an LTrP-based novel spatiotemporal descriptor for characterization and subsequent identification of textures in videos. We term this descriptor as local tetra patterns on three orthogonal planes (LTrP-TOP). In our proposed work, the video frames are initially divided into three orthogonal planes on the basis of the XY, YT and XT directions. The direction of the center and neighborhood pixels are then detected in vertical and horizontal orientations using first-order derivatives. This sequence of operations computes the LTrP for each center pixel. Subsequently, we create the histogram for a particular plane by considering the LTrP codes for all the pixels in that plane. Finally, the histograms from the three orthogonal planes are concatenated for forming the final texture descriptor of the video. Comprehensive experimental assessments on benchmark DT databases (Dyntex++ and UCLA) demonstrate that the LTrP-TOP descriptor exhibits better performance than most of the other state-of-the-art DT descriptors (in terms of classification accuracy %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://projects.cwi.nl/DynTex/database.html.

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006). https://doi.org/10.1109/TPAMI.2006.244

    Article  MATH  Google Scholar 

  2. Arashloo, S.R., Kittler, J.: Dynamic texture recognition using multiscale binarized statistical image features. IEEE Trans. Multimed. 16(8), 2099–2109 (2014). https://doi.org/10.1109/TMM.2014.2362855

    Article  Google Scholar 

  3. Baktashmotlagh, M., Harandi, M., Lovell, B.C., Salzmann, M.: Discriminative non-linear stationary subspace analysis for video classification. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2353–2366 (2014). https://doi.org/10.1109/TPAMI.2014.2339851

    Article  Google Scholar 

  4. Chan, A.B., Vasconcelos, N.: Probabilistic kernels for the classification of auto-regressive visual processes. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 846–851 (2005). https://doi.org/10.1109/CVPR.2005.279

  5. Chan, A.B., Vasconcelos, N.: Layered dynamic textures. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1862–1879 (2009). https://doi.org/10.1109/TPAMI.2009.110

    Article  Google Scholar 

  6. Chan, A.B., Vasconcelos, N.: Variational layered dynamic textures. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1062–1069 (2009). https://doi.org/10.1109/CVPR.2009.5206556

  7. Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition. In: Computer Recognition Systems, pp. 17–26. Springer (2005)

  8. Danelakis, A., Theoharis, T., Pratikakis, I.: A robust spatio-temporal scheme for dynamic 3d facial expression retrieval. Vis. Comput. 32(2), 257–269 (2016). https://doi.org/10.1007/s00371-015-1142-7

    Article  Google Scholar 

  9. Derpanis, K.G.P., Wildes, R.: Spacetime texture representation and recognition based on a spatiotemporal orientation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1193–1205 (2012). https://doi.org/10.1109/TPAMI.2011.221

    Article  Google Scholar 

  10. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003). https://doi.org/10.1023/A:1021669406132

    Article  MATH  Google Scholar 

  11. Fazekas, S., Chetverikov, D.: Analysis and performance evaluation of optical flow features for dynamic texture recognition. Image Commun. 22(7–8), 680–691 (2007). https://doi.org/10.1016/j.image.2007.05.013

    Article  Google Scholar 

  12. Fazekas, S., Chetverikov, D.: Dynamic texture recognition using optical flow features and temporal periodicity. In: 2007 International Workshop on Content-Based Multimedia Indexing, pp. 25–32 (2007). https://doi.org/10.1109/CBMI.2007.385388

  13. Ghanem, B., Ahuja, N.: Maximum margin distance learning for dynamic texture recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision—ECCV 2010, pp. 223–236. Springer, Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  14. Gonçalves, W.N., Machado, B.B., Bruno, O.M.: Spatiotemporal gabor filters: a new method for dynamic texture recognition. CoRR (2012) arXiv:1201.3612

  15. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010). https://doi.org/10.1109/TIP.2010.2044957

    Article  MathSciNet  MATH  Google Scholar 

  16. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012). https://doi.org/10.1109/TIP.2012.2188809

    Article  MathSciNet  MATH  Google Scholar 

  17. Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. CVGIP Image Underst. 56(1), 78–89 (1992). https://doi.org/10.1016/1049-9660(92)90087-J

    Article  MATH  Google Scholar 

  18. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  19. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  20. Péteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture regularity. In: Proceedings of the Second Iberian Conference on Pattern Recognition and Image Analysis—Volume Part II, IbPRIA’05, pp. 223–230. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11492542_28

    Chapter  Google Scholar 

  21. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns, pp. E1–E2. Springer, London (2011). https://doi.org/10.1007/978-0-85729-748-8_14

    Book  Google Scholar 

  22. Polana, R., Nelson, R.: Temporal Texture and Activity Recognition, pp. 87–124. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-015-8935-2_5

    Book  Google Scholar 

  23. Qiao, Y., Weng, L.: Hidden markov model based dynamic texture classification. IEEE Signal Process. Lett. 22(4), 509–512 (2015). https://doi.org/10.1109/LSP.2014.2362613

    Article  Google Scholar 

  24. Qiao, Y.L., Song, C.Y., Wang, F.S.: Wavelet-based dynamic texture classification using complex generalized gaussian distribution. In: AISS, vol. 4 (2012)

  25. Qiao, Y.L., Song, C.Y., Wang, F.S.: Wavelet-based dynamic texture classification using gumbel distribution. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/762472

    Article  MathSciNet  Google Scholar 

  26. Ravichandran, A., Chaudhry, R., Vidal, R.: View-invariant dynamic texture recognition using a bag of dynamical systems. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1651–1657 (2009). https://doi.org/10.1109/CVPR.2009.5206847

  27. Ravichandran, A., Chaudhry, R., Vidal, R.: Categorizing dynamic textures using a bag of dynamical systems. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 342–353 (2013). https://doi.org/10.1109/TPAMI.2012.83

    Article  Google Scholar 

  28. Ren, J., Jiang, X., Yuan, J.: Dynamic texture recognition using enhanced lbp features. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2400–2404 (2013). https://doi.org/10.1109/ICASSP.2013.6638085

  29. Ren, J., Jiang, X., Yuan, J.: Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 22(10), 4049–4060 (2013). https://doi.org/10.1109/TIP.2013.2268976

    Article  MathSciNet  MATH  Google Scholar 

  30. Ren, J., Jiang, X., Yuan, J., Wang, G.: Optimizing lbp structure for visual recognition using binary quadratic programming. IEEE Signal Process. Lett. 21(11), 1346–1350 (2014). https://doi.org/10.1109/LSP.2014.2336252

    Article  Google Scholar 

  31. Saisan, P., Doretto, G., Wu, Y.N., Soatto, S.: Dynamic texture recognition. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 2, pp. II–58–II–63 (2001). https://doi.org/10.1109/CVPR.2001.990925

  32. Shrivastava, N., Tyagi, V.: An effective scheme for image texture classification based on binary local structure pattern. Vis. Comput. 30(11), 1223–1232 (2014). https://doi.org/10.1007/s00371-013-0887-0

    Article  Google Scholar 

  33. Smith, J.R., Lin, C.Y., Naphade, M.: Video texture indexing using spatio-temporal wavelets. In: Proceedings. International Conference on Image Processing, vol. 2, pp. II–437–II–440 (2002). https://doi.org/10.1109/ICIP.2002.1039981

  34. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010). https://doi.org/10.1109/TIP.2010.2042645

    Article  MathSciNet  MATH  Google Scholar 

  35. Tiwari, D., Tyagi, V.: Dynamic texture recognition: a review. In: Satapathy, S.C., Mandal, J.K., Udgata, S.K., Bhateja, V. (eds.) Information Systems Design and Intelligent Applications, pp. 365–373. Springer India, New Delhi (2016)

    Chapter  Google Scholar 

  36. Tiwari, D., Tyagi, V.: Dynamic texture recognition based on completed volume local binary pattern. Multidimens. Syst. Signal Process. 27(2), 563–575 (2016b). https://doi.org/10.1007/s11045-015-0319-6

    Article  Google Scholar 

  37. Tiwari, D., Tyagi, V.: A novel scheme based on local binary pattern for dynamic texture recognition. Comput. Vis. Image Underst. 150, 58–65 (2016). https://doi.org/10.1016/j.cviu.2016.04.010

    Article  Google Scholar 

  38. Tiwari, D., Tyagi, V.: Dynamic texture recognition using multiresolution edge-weighted local structure pattern. Comput. Electr. Eng. 62, 485–498 (2017a). https://doi.org/10.1016/j.compeleceng.2016.11.008

    Article  Google Scholar 

  39. Tiwari, D., Tyagi, V.: Improved weber’s law based local binary pattern for dynamic texture recognition. Multimed. Tools Appl 76(5), 6623–6640 (2017b). https://doi.org/10.1007/s11042-016-3362-x

    Article  Google Scholar 

  40. Tung, T., Matsuyama, T.: Invariant shape descriptor for 3d video encoding. Vis. Comput. 31(3), 311–324 (2015). https://doi.org/10.1007/s00371-014-0925-6

    Article  Google Scholar 

  41. Wang, Y., Hu, S.: Exploiting high level feature for dynamic textures recognition. Neurocomputing 154(C), 217–224 (2015). https://doi.org/10.1016/j.neucom.2014.12.001

    Article  Google Scholar 

  42. Wang, Y., Hu, S.: Chaotic features for dynamic textures recognition. Soft Comput. 20(5), 1977–1989 (2016). https://doi.org/10.1007/s00500-015-1618-4

    Article  Google Scholar 

  43. Xu, Y., Quan, Y., Ling, H., Ji, H.: Dynamic texture classification using dynamic fractal analysis. In: 2011 International Conference on Computer Vision, pp. 1219–1226 (2011). https://doi.org/10.1109/ICCV.2011.6126372

  44. Xu, Y., Huang, S., Ji, H., FermüLler, C.: Scale-space texture description on sift-like textons. Comput. Vis. Image Underst. 116(9), 999–1013 (2012). https://doi.org/10.1016/j.cviu.2012.05.003

    Article  Google Scholar 

  45. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010). https://doi.org/10.1109/TIP.2009.2035882

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007). https://doi.org/10.1109/TPAMI.2007.1110

    Article  Google Scholar 

  47. Zhao, G., Pietikäinen, M.: Dynamic texture recognition using volume local binary patterns. In: Vidal, R., Heyden, A., Ma, Y. (eds.) Dynamical Vision, pp. 165–177. Springer, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  48. Zhao, G., Ahonen, T., Matas, J., Pietikainen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 21(4), 1465–1477 (2012). https://doi.org/10.1109/TIP.2011.2175739

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Sadhya.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amit, Raman, B. & Sadhya, D. Dynamic texture recognition using local tetra pattern—three orthogonal planes (LTrP-TOP). Vis Comput 36, 579–592 (2020). https://doi.org/10.1007/s00371-019-01643-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01643-4

Keywords

Navigation