Skip to main content
Log in

Pattern recognition based on compound complex shape-invariant Radon transform

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Radon transform based on complex shape detection is one of the most important challenges in the field of pattern recognition. Finding a robust transform for extracting and identifying complex shape is still an ongoing research issue. In this paper, aiming to simplify complex pattern recognition, we propose a new methodology of recognition flows. The proposed method is based on a decomposition of complex objects into elementary shapes and an evaluation of the pertinence of the generated primitives in recognizing the object. Accordingly, a series of the most pertinent primitives are selected. Then, the recognition step starts with a test on the most pertinent primitives. Our approach, called compound complex shape-invariant Radon transform, takes its importance in recognizing object class from a partial elementary scale and orientation-invariant Radon transforms, done on selected primitives. SVM classifier is then used for decision making based on obtained transforms. Validation of the proposed approach is done on the MPEG7 dataset, yielding a recognition rate of 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: An efficient 3D face recognition approach using local geometrical signatures. Pattern Recognit. 47(2), 509–524 (2014). https://doi.org/10.1016/j.patcog.2013.07.018

    Article  Google Scholar 

  2. Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29(10), 983–1009 (2013). https://doi.org/10.1007/s00371-012-0752-6

    Article  Google Scholar 

  3. Berretti, S., Amor, B.B., Daoudi, M., Del Bimbo, A.: 3D facial expression recognition using SIFT descriptors of automatically detected keypoints. Vis. Comput. 27(11), 1021 (2011). https://doi.org/10.1007/s00371-011-0611-x

    Article  Google Scholar 

  4. Wu, H., Zou, B., Zhao, Y.Q., Guo, J.: Scene text detection using adaptive color reduction, adjacent character model and hybrid verification strategy. Vis. Comput. 33(1), 113–126 (2017). https://doi.org/10.1007/s00371-015-1156-1

    Article  Google Scholar 

  5. Zabulis, X., Lourakis, M.I., Koutlemanis, P.: Correspondence-free pose estimation for 3D objects from noisy depth data. Vis. Comput. 34(2), 193–211 (2018). https://doi.org/10.1007/s00371-016-1326-9

    Article  Google Scholar 

  6. Jafri, R., Ali, S.A., Arabnia, H.R., Fatima, S.: Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Vis. Comput. 30(11), 1197–1222 (2014). https://doi.org/10.1007/s00371-013-0886-1

    Article  Google Scholar 

  7. Shang, J., Chen, C., Pei, X., Liang, H., Tang, H., Sarem, M.: A novel local derivative quantized binary pattern for object recognition. Vis. Comput. 33(2), 221–233 (2017). https://doi.org/10.1007/s00371-015-1179-7

    Article  Google Scholar 

  8. Hong, B.W., Soatto, S.: Shape matching using multiscale integral invariants. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 151–160 (2015). https://doi.org/10.1109/TPAMI.2014.2342215

    Article  Google Scholar 

  9. Fleury, A., Noury, N., Vacher, M.: A wavelet-based pattern recognition algorithm to classify postural transitions in humans. In: 2009 17th European Conference in Signal Processing. IEEE, pp. 2047–2051 (2009)

  10. Arivazhagan, S., Ganesan, L., Kumar, T.S.: Texture classification using ridgelet transform. Pattern Recognit. Lett. 27(16), 1875–1883 (2006). https://doi.org/10.1016/j.patrec.2006.04.013

    Article  Google Scholar 

  11. Hasegawa, M., Tabbone, S.: Affine invariant shape matching using radon transform and dynamic time warping distance. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, pp. 777–781 (2012)

  12. Zhang, X., Lin, Z., Sun, F., Ma, Y.: Transform invariant text extraction. Vis. Comput. 30(4), 401–415 (2014). https://doi.org/10.1007/s00371-013-0864-7

    Article  Google Scholar 

  13. Arigbabu, O.A., Ahmad, S.M.S., Adnan, W.A.W., Yussof, S.: Recent advances in facial soft biometrics. Vis. Comput. 31(5), 513–525 (2015). https://doi.org/10.1007/s00371-014-0990-x

    Article  Google Scholar 

  14. Gangopadhyay, A., Chatterjee, O., Chatterjee, A.: Hand shape based biometric authentication system using radon transform and collaborative representation based classification. In: IEEE Second International Conference on Image Information Processing (ICIIP), pp. 635–639 (2013)

  15. Sathish, D., Kamath, S., Prasad, K., Kadavigere, R.: Role of normalization of breast thermogram images and automatic classification of breast cancer. Comput. Vis. (2017). https://doi.org/10.1007/s00371-017-1447-9

    Article  Google Scholar 

  16. Xiao, B., Ma, J.F., Cui, J.T.: Combined blur, translation, scale and rotation invariant image recognition by Radon and pseudo-Fourier–Mellin transforms. Pattern Recognit. 45(1), 314–321 (2012). https://doi.org/10.1016/j.patcog.2011.06.017

    Article  MATH  Google Scholar 

  17. Hasegawa, M., Tabbone, S.: Histogram of radon transform with angle correlation matrix for distortion invariant shape descriptor. Neurocomputing 173, 24–35 (2016). https://doi.org/10.1016/j.neucom.2015.04.100

    Article  Google Scholar 

  18. Hasegawa, M., Tabbone, S.: A shape descriptor combining logarithmic scale histogram of radon transform and phase-only correlation function. In: IEEE International Conference on Document Analysis and Recognition (ICDAR), pp. 182–186 (2011)

  19. Tabbone, S., Terrades, O.R., Barrat, S.: Histogram of radon transform. A useful descriptor for shape retrieval. In: 19th International Conference on Pattern Recognition (ICPR) (2008)

  20. Hentati, J., Naouai, M., Hamouda, A., Weber, C.: Measuring rectangularity using gr-signature. In: Mexican Conference on Pattern Recognition. Springer, Berlin, pp. 136–145 (2011)

    Google Scholar 

  21. Hasegawa, M., Tabbone, S.: Amplitude-only log radon transform for geometric invariant shape descriptor. Pattern Recognit. 47(2), 643–658 (2014). https://doi.org/10.1016/j.patcog.2013.07.024

    Article  Google Scholar 

  22. Ines, E., Dhikra, H., Regis, F., Amine, N.-A., Atef, H.: Fingerprint recognition using polynomial discrete radon transform. In: IEEE 4th International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2014)

  23. Hendriks, C.L.L., Van Ginkel, M., Verbeek, P.W., Van Vliet, L.J.: The generalized radon transform: sampling, accuracy and memory considerations. Pattern Recognit. 38(12), 2494–2505 (2005). https://doi.org/10.1016/j.patcog.2005.04.018

    Article  Google Scholar 

  24. Roopkumar, R.: Generalized radon transform. Rocky Mt. J. Math. 36(4), 1375–1390 (2006)

    Article  MathSciNet  Google Scholar 

  25. Toft, P.A.: Using the generalized Radon transform for detection of curves in noisy images. In: IEEE International Conference on Acoustic, Speech, and Signal Process (ICASSP-96), Conference Proceedings, pp. 2219–2222 (1996)

  26. Elouedi, I., Fournier, R., Nait-Ali, A., Hamouda, A.: Generalized multidirectional discrete radon transform. Signal Process. 93(1), 345–355 (2013). https://doi.org/10.1016/j.sigpro.2012.07.031

    Article  Google Scholar 

  27. Hammouda, G., Hammouda, A., Sellami, D.: Complex Object recognition based on multi-shape invariant radon transform. In: International Conference on Intelligent Decision Technologies. Springer, Cham, pp. 13–22 (2017)

    Google Scholar 

  28. Ren, Z., Yuan, J., Liu, W.: Minimum near-convex shape decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2546–2552 (2013). https://doi.org/10.1109/TPAMI.2013.67

    Article  Google Scholar 

  29. Suarez, J., Belhadj, F., Boyer, V.: Real-time 3D rendering with hatching. Vis. Comput. 33(10), 1319–1334 (2017). https://doi.org/10.1007/s00371-016-1222-3

    Article  Google Scholar 

  30. Rong, W., Li, Z., Zhang, W., Sun, L.: An improved CANNY edge detection algorithm. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 577–582 (2014)

  31. Xu, Q., Varadarajan, S., Chakrabarti, C., Karam, L.J.: A distributed canny edge detector: algorithm and FPGA implementation. IEEE Trans. Image Process. 23(7), 2944–2960 (2014). https://doi.org/10.1109/TIP.2014.2311656

    Article  MathSciNet  MATH  Google Scholar 

  32. Chau, A.L., Li, X., Yu, W.: Support vector machine classification for large datasets using decision tree and Fisher linear discriminant. Future Gener. Comput. Syst. 36, 57–65 (2014). https://doi.org/10.1016/j.future.2013.06.021

    Article  Google Scholar 

  33. Beylkin, G.: Discrete Radon transform. IEEE Trans. Acoust. 35(2), 162–172 (1987)

    Article  MathSciNet  Google Scholar 

  34. de Oliveira, A.B., da Silva, P.R., Barone, D.A.C.: A novel 2d shape signature method based on complex network spectrum. Pattern Recognit. Lett. 63, 43–49 (2015). https://doi.org/10.1016/j.patrec.2015.05.018

    Article  Google Scholar 

  35. Kaothanthong, N., Chun, J., Tokuyama, T.: Distance interior ratio: a new shape signature for 2D shape retrieval. Pattern Recognit. Lett. 78, 14–21 (2016). https://doi.org/10.1016/j.patrec.2016.03.029

    Article  Google Scholar 

  36. Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 424–429 (2000)

  37. Escalera, S., Fornés, A., Pujol, O., Radeva, P., Sánchez, G., Lladós, J.: Blurred shape model for binary and grey-level symbol recognition. Pattern Recognit. Lett. 30(15), 1424–1433 (2009). https://doi.org/10.1016/j.patrec.2009.08.001

    Article  Google Scholar 

  38. Nasreddine, K., Benzinou, A., Fablet, R.: Variational shape matching for shape classification and retrieval. Pattern Recognit. Lett. 31(12), 1650–1657 (2010). https://doi.org/10.1016/j.patrec.2010.05.014

    Article  Google Scholar 

  39. Sirin, Y., Demirci, M.F.: 2D and 3D shape retrieval using skeleton filling rate. Multimed. Tools Appl. 76(6), 7823–7848 (2017). https://doi.org/10.1007/s11042-016-3422-2

    Article  Google Scholar 

  40. http://www.dabi.temple.edu/~shape/MPEG7/results.html

  41. Shekar, B.H., Pilar, B., Kittler, J.: An unification of inner distance shape context and local binary pattern for shape representation and classification. In: Proceedings of the 2nd International Conference on Perception and Machine Intelligence. ACM, pp. 46–55 (2015)

  42. Ebrahim, Y., Ahmed, M., Abdelsalam, W., Chau, S.C.: Shape representation and description using the Hilbert curve. Pattern Recognit. Lett. 30(4), 348–358 (2009). https://doi.org/10.1016/j.patrec.2008.09.013

    Article  Google Scholar 

  43. Gopalan, R., Turaga, P., Chellappa, R.: Articulation-invariant representation of non-planar shapes. In: European Conference on Computer Vision. Springer, Berlin, pp. 286–299 (2010)

    Chapter  Google Scholar 

  44. Wang, J., Bai, X., You, X., Liu, W., Latecki, L.J.: Shape matching and classification using height functions. Pattern Recognit. Lett. 33(2), 134–143 (2012). https://doi.org/10.1016/j.patrec.2011.09.042

    Article  Google Scholar 

  45. Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, pp. 1–8 (2007)

  46. Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: European Conference on Computer Vision. Springer, Berlin, pp. 411–424 (2010)

    Chapter  Google Scholar 

  47. Donoser, M., Bischof, H.: Diffusion processes for retrieval revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1320–1327 (2013). https://doi.org/10.1016/j.patrec.2011.09.042

    Article  Google Scholar 

  48. Xu, C., Liu, J., Tang, X.: 2D shape matching by contour flexibility. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 180–186 (2009). https://doi.org/10.1109/TPAMI.2008.199

    Article  Google Scholar 

  49. Wang, Z., Liang, M.: Locally affine invariant descriptors for shape matching and retrieval. IEEE Signal Process. Lett. 17(9), 803–806 (2010). https://doi.org/10.1109/LSP.2010.2057506

    Article  Google Scholar 

  50. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.X., Chang, Y.F., Xiang, Q.L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE International Symposium on Signal Processing and Information Technology. IEEE, pp. 11–16 (2007)

  51. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.: Leafsnap: A computer vision system for automatic plant species identification. In: Computer vision-ECCV 2012. Springer, Berlin, pp. 502–516 (2012)

    Chapter  Google Scholar 

  52. Nguyen, Q.K., Le, T.L., Pham, N.H.: Leaf based plant identification system for android using surf features in combination with bag of words model and supervised learning. In: 2013 International Conference on Advanced Technologies for Communications (ATC). IEEE, pp. 404–407 (2013)

  53. Choudhury, S.D., Yu, J.G., Samal, A.: Leaf recognition using contour unwrapping and apex alignment with tuned random subspace method. Biosyst. Eng. 170, 72–84 (2018). https://doi.org/10.1016/j.biosystemseng.2018.04.001

    Article  Google Scholar 

  54. Hu, R.X., Jia, W., Ling, H., Huang, D.: Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21(11), 4667–4672 (2012). https://doi.org/10.1109/TIP.2012.2207391

    Article  MathSciNet  MATH  Google Scholar 

  55. Barré, P., Stöver, B.C., Müller, K.F., Steinhage, V.: LeafNet: a computer vision system for automatic plant species identification. Ecol. Inf. 40, 50–56 (2017). https://doi.org/10.1016/j.ecoinf.2017.05.005

    Article  Google Scholar 

  56. Zhao, Z.Q., Xie, B.J., Cheung, Y.M., Wu, X.: Plant leaf identification via a growing convolution neural network with progressive sample learning. In: Asian Conference on Computer Vision. Springer, Cham, pp. 348–361 (2014)

    Chapter  Google Scholar 

  57. Shah, M.P., Singha, S., Awate, S.P.: Leaf classification using marginalized shape context and shape+ texture dual-path deep convolutional neural network. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 860–864. IEEE (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassen Hammouda.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammouda, G., Sellami, D. & Hammouda, A. Pattern recognition based on compound complex shape-invariant Radon transform. Vis Comput 36, 279–290 (2020). https://doi.org/10.1007/s00371-018-1604-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1604-9

Keywords

Navigation