Abstract
Facial expression recognition applications demand accurate and fast algorithms that can run in real time on platforms with limited computational resources. We propose an algorithm that bridges the gap between precise but slow methods and fast but less precise methods. The algorithm combines gentle boost decision trees and neural networks. The gentle boost decision trees are trained to extract highly discriminative feature vectors (local binary features) for each basic facial expression around distinct facial landmark points. These sparse binary features are concatenated and used to jointly optimize facial expression recognition through a shallow neural network architecture. The joint optimization improves the recognition rates of difficult expressions such as fear and sadness. Furthermore, extensive experiments in both within- and cross-database scenarios have been conducted on relevant benchmark data sets for facial expression recognition: CK+, MMI, JAFFE, and SFEW 2.0. The proposed method (LBF-NN) compares favorably with state-of-the-art algorithms while achieving an order of magnitude improvement in execution time.
This is a preview of subscription content, access via your institution.














References
Boughrara, H., Chtourou, M., Amar, C.B., Chen, L.: Facial expression recognition based on a MLP neural network using constructive training algorithm. Multimed. Tools Appl. 75(2), 709–731 (2016)
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC Press, Boca Raton (1984)
Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D and 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: International Conference on Computer Vision, vol. 1, p. 4 (2017)
Burkert, P., Trier, F., Afzal, M.Z., Dengel, A., Liwicki, M.: Dexpression: Deep convolutional neural network for expression recognition. arXiv preprint arXiv:1509.05371 (2015)
Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)
Dhall, A., Asthana, A., Goecke, R., Gedeon, T.: Emotion recognition using PHOG and LPQ features. In: 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG 2011), pp. 878–883. IEEE (2011)
Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Static facial expression analysis in tough conditions: data, evaluation protocol and benchmark. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2106–2112. IEEE (2011)
Dhall, A., Ramana Murthy, O., Goecke, R., Joshi, J., Gedeon, T.: Video and image based emotion recognition challenges in the wild: Emotiw 2015. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 423–426. ACM (2015)
Ding, H., Zhou, S.K., Chellappa, R.: Facenet2expnet: Regularizing a deep face recognition net for expression recognition. In: 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), pp. 118–126. IEEE (2017)
Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists, San Francisco (1978)
Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124 (1971)
Eleftheriadis, S., Rudovic, O., Pantic, M.: Discriminative shared gaussian processes for multiview and view-invariant facial expression recognition. IEEE Trans. Image Process. 24(1), 189–204 (2015)
Fang, H., Mac Parthaláin, N., Aubrey, A.J., Tam, G.K., Borgo, R., Rosin, P.L., Grant, P.W., Marshall, D., Chen, M.: Facial expression recognition in dynamic sequences: an integrated approach. Pattern Recogn. 47(3), 1271–1281 (2014)
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)
Goodfellow, I.J., Erhan, D., Carrier, P.L., Courville, A., Mirza, M., Hamner, B., Cukierski, W., Tang, Y., Thaler, D., Lee, D.H., et al.: Challenges in representation learning: a report on three machine learning contests. In: International Conference on Neural Information Processing, pp. 117–124. Springer, Berlin (2013)
Gritti, T., Shan, C., Jeanne, V., Braspenning, R.: Local features based facial expression recognition with face registration errors. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition, 2008. FG’08, pp. 1–8. IEEE (2008)
Gu, W., Xiang, C., Venkatesh, Y., Huang, D., Lin, H.: Facial expression recognition using radial encoding of local gabor features and classifier synthesis. Pattern Recogn. 45(1), 80–91 (2012)
Gudi, A., Tasli, H.E., den Uyl, T.M., Maroulis, A.: Deep learning based facs action unit occurrence and intensity estimation. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1–5. IEEE (2015)
Guo, Y., Zhao, G., Pietikäinen, M.: Dynamic facial expression recognition with atlas construction and sparse representation. IEEE Trans. Image Process. 25(5), 1977–1992 (2016)
Happy, S., Routray, A.: Automatic facial expression recognition using features of salient facial patches. IEEE Trans. Affect. Comput. 6(1), 1–12 (2015)
Huang, X., Zhao, G., Pietikäinen, M., Zheng, W.: Robust facial expression recognition using revised canonical correlation. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 1734–1739. IEEE (2014)
Jaiswal, S., Martinez, B., Valstar, M.F.: Learning to combine local models for facial action unit detection. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1–6. IEEE (2015)
Jiang, B., Martinez, B., Valstar, M.F., Pantic, M.: Decision level fusion of domain specific regions for facial action recognition. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 1776–1781. IEEE (2014)
Jiang, B., Valstar, M., Martinez, B., Pantic, M.: A dynamic appearance descriptor approach to facial actions temporal modeling. IEEE Trans. Cybern. 44(2), 161–174 (2014)
Khan, R.A., Meyer, A., Konik, H., Bouakaz, S.: Framework for reliable, real-time facial expression recognition for low resolution images. Pattern Recogn. Lett. 34(10), 1159–1168 (2013)
Kim, B.K., Dong, S.Y., Roh, J., Kim, G., Lee, S.Y.: Fusing aligned and non-aligned face information for automatic affect recognition in the wild: a deep learning approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 48–57 (2016)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lee, D., Park, H., Yoo, C.D.: Face alignment using cascade Gaussian process regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4204–4212 (2015)
Lee, S.H., Plataniotis, K.N.K., Ro, Y.M.: Intra-class variation reduction using training expression images for sparse representation based facial expression recognition. IEEE Trans. Affect. Comput. 5(3), 340–351 (2014)
Levi, G., Hassner, T.: Emotion recognition in the wild via convolutional neural networks and mapped binary patterns. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 503–510. ACM (2015)
Littlewort, G., Bartlett, M.S., Fasel, I., Susskind, J., Movellan, J.: Dynamics of facial expression extracted automatically from video. Image Vis. Comput. 24(6), 615–625 (2006)
Liu, M., Shan, S., Wang, R., Chen, X.: Learning expression lets on spatio-temporal manifold for dynamic facial expression recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1749–1756 (2014)
Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1805–1812 (2014)
Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)
Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recogn. 61, 610–628 (2017)
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101. IEEE (2010)
Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with gabor wavelets. In: Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 200–205. IEEE (1998)
Mehrabian, A.: Silent Messages, vol. 8. Wadsworth, Belmont (1971)
Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)
Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 443–449. ACM (2015)
Owusu, E., Zhan, Y., Mao, Q.R.: A neural-adaboost based facial expression recognition system. Expert Syst. Appl. 41(7), 3383–3390 (2014)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: IEEE International Conference on Multimedia and Expo, 2005. ICME 2005, pp. 5. IEEE (2005)
Poursaberi, A., Noubari, H.A., Gavrilova, M., Yanushkevich, S.N.: Gauss-laguerre wavelet textural feature fusion with geometrical information for facial expression identification. EURASIP J. Image Video Process. 2012(1), 17 (2012)
Pramerdorfer, C., Kampel, M.: Facial expression recognition using convolutional neural networks: state of the art. arXiv preprint arXiv:1612.02903 (2016)
Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment via regressing local binary features. IEEE Trans. Image Process. 25(3), 1233–1245 (2016)
Rivera, A.R., Castillo, J.R., Chae, O.O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22(5), 1740–1752 (2013)
Rudovic, O., Pavlovic, V., Pantic, M.: Multi-output Laplacian dynamic ordinal regression for facial expression recognition and intensity estimation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2634–2641. IEEE (2012)
Sandbach, G., Zafeiriou, S., Pantic, M.: Markov random field structures for facial action unit intensity estimation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 738–745 (2013)
Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)
Wan, S., Aggarwal, J.: Spontaneous facial expression recognition: a robust metric learning approach. Pattern Recogn. 47(5), 1859–1868 (2014)
Whitehill, J., Bartlett, M.S., Movellan, J.R.: Automatic facial expression recognition. Soc. Emot. Nat. Artifact 88, 58 (2013)
Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11(2), 226–235 (1969)
Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep network learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 435–442. ACM (2015)
Zavaschi, T.H., Britto, A.S., Oliveira, L.E., Koerich, A.L.: Fusion of feature sets and classifiers for facial expression recognition. Expert Syst. Appl. 40(2), 646–655 (2013)
Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)
Zhai, Y., Liu, J., Zeng, J., Piuri, V., Scotti, F., Ying, Z., Xu, Y., Gan, J.: Deep convolutional neural network for facial expression recognition. In: International Conference on Image and Graphics, pp. 211–223. Springer, Berlin (2017)
Zhang, L., Tjondronegoro, D.: Facial expression recognition using facial movement features. IEEE Trans. Affect. Comput. 2(4), 219–229 (2011)
Zhang, X., Mahoor, M.H., Mavadati, S.M.: Facial expression recognition using \(\{l\}_ \{p\}\)-norm MKL multiclass-SVM. Mach. Vis. Appl. 26(4), 467–483 (2015)
Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)
Zhong, L., Liu, Q., Yang, P., Huang, J., Metaxas, D.N.: Learning multiscale active facial patches for expression analysis. IEEE Trans. Cybern. 45(8), 1499–1510 (2015)
Zhu, S., Li, C., Change Loy, C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4998–5006 (2015)
Zong, Y., Zheng, W., Huang, X., Yan, K., Yan, J., Zhang, T.: Emotion recognition in the wild via sparse transductive transfer linear discriminant analysis. J. Multimodal User Interfaces 10(2), 163–172 (2016)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Authors I. Gogić and M. Manhart have received grants from the company Visage Technologies. Authors I. S. Pandžić and J. Ahlberg own stock in and are members of the board of directors of the company Visage Technologies.
Rights and permissions
About this article
Cite this article
Gogić, I., Manhart, M., Pandžić, I.S. et al. Fast facial expression recognition using local binary features and shallow neural networks. Vis Comput 36, 97–112 (2020). https://doi.org/10.1007/s00371-018-1585-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-018-1585-8
Keywords
- Facial expression recognition
- Neural networks
- Decision tree ensembles
- Local binary features