Skip to main content
Log in

Incremental Voronoi sets for instant stippling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a fast digital stippling algorithm, which makes a fair balance on result quality and computational efficiency. The algorithm is based on precomputed blue noise point sets constructed by incremental Voronoi sets (IVS) and a real-time parallelized rejection strategy. The proposed technique is readily extended to generate multi-tone-level or multi-nib-size stippling results of increased pleasure visual impressions with smooth tone transition. The IVS can also be regressed to generate blue noise masks for digital halftoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ahmed, A., Guo, J., Yan, D.M., Franceschi, J.Y., Zhang, X., Deussen, O.: A simple push-pull algorithm for blue-noise sampling. IEEE Trans. Vis. Comput. Graph. 23(12), 2496–2508 (2017)

    Article  Google Scholar 

  2. Ahmed, A., Niese, T., Huang, H., Deussen, O.: An adaptive point sampler on a regular lattice. ACM Trans. Graph. 36(4), 4138:1–138:13 (2017)

    Article  Google Scholar 

  3. Ahmed, A., Perrier, H., Coeurjolly, D., Ostromoukhov, V., Guo, J., Yan, D., Huang, H., Deussen, O.: Low-discrepancy blue noise sampling. ACM Trans. Graph. 35(6), 247:1–247:13 (2016)

    Article  Google Scholar 

  4. Ahmed, A.G.M., Huang, H., Deussen, O.: AA patterns for point sets with controlled spectral properties. ACM Trans. Graph. 34(6), 212:1–212:8 (2015)

    Article  Google Scholar 

  5. Ascencio-Lopez, I., Meruvia-Pastor, O., Hidalgo-Silva, H.: Adaptive incremental stippling using the Poisson-disk distribution. J. Graph. GPU Game Tools 15(1), 29–47 (2010)

    Article  Google Scholar 

  6. Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of Lloyd’s method. ACM Trans. Graph. (Proc. SIGGRAPH) 28(6), 86:1–86:8 (2009)

    Google Scholar 

  7. Bayer, B.E.: An optimum method for two-level rendition of continuous-tone pictures. IEEE Int. Conf. Commun. 26, 11–15 (1973)

    Google Scholar 

  8. Chen, J., Ge, X., Wei, L.Y., Wang, B., Wang, Y., Wang, H., Fei, Y., Qian, K.L., Yong, J.H., Wang, W.: Bilateral blue noise sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32(6), 216:1–216:11 (2013)

    Google Scholar 

  9. Chen, R., Gotsman, C.: Parallel blue-noise sampling by constrained farthest point optimization. Comput. Graph. Forum (Proc. SGP) 31(5), 1775–1785 (2012)

    Article  Google Scholar 

  10. Chen, Z., Yuan, Z., Choi, Y.K., Liu, L., Wang, W.: Variational blue noise sampling. IEEE Trans. Vis. Comput. Graph. 18(10), 1784–1796 (2012)

    Article  Google Scholar 

  11. Cline, D., Jeschke, S., Razdan, A., White, K., Wonka, P.: Dart throwing on surfaces. Comput. Graph. Forum (Proc. EGSR) 28(4), 1217–1226 (2009)

    Article  Google Scholar 

  12. Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang tiles for image and texture generation. Int. Conf. Comput. Graph. Interact. Tech. 22(3), 287–294 (2003)

    Google Scholar 

  13. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 69–78 (1986)

    Article  Google Scholar 

  14. Deussen, O., Hiller, S., Van Overveld, C., Strothotte, T.: Floating points: a method for computing stipple drawings. Comput. Graph. Forum 19(3), 41–50 (2000)

    Article  Google Scholar 

  15. Deussen, O., Hiller, S., Van Overveld, C., Strothotte, T.: Floating points: a method for computing stipple drawings. Comput. Graph. Forum 19, 41–50 (2000). Wiley Online Library

    Article  Google Scholar 

  16. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ebeida, M.S., Mitchell, S.A., Patney, A., Davidson, A.A., Owens, J.D.: A simple algorithm for maximal Poisson-disk sampling in high dimensions. Comput. Graph. Forum (Proc. EUROGRAPHICS) 31(2), 785–794 (2012)

    Article  Google Scholar 

  18. Ebeida, M.S., Patney, A., Mitchell, S.A., Andrew Davidson, P.M.K., Owens, J.D.: Efficient maximal Poisson-disk sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 30(4), 49:1–49:12 (2011)

    Article  Google Scholar 

  19. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  20. Fattal, R.: Blue-noise point sampling using kernel density model. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3), 48:1–48:10 (2011)

    Google Scholar 

  21. Georgiev, I., Fajardo, M.: Blue-noise dithered sampling. In: ACM SIGGRAPH 2016 Talks, SIGGRAPH ’16. ACM, New York, NY, USA, pp. 35:1–35:1 (2016)

  22. de Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 171:1–171:12 (2012)

    Google Scholar 

  23. Gwosdek, P., Schmaltz, C., Weickert, J., Teuber, T.: Electrostatic halftoning. J. Real-Time Image Proc. 9(2), 379–392 (2014)

    Article  Google Scholar 

  24. Kang, H.R.: Digital color halftoning, 1st edn. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA (1999)

  25. Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. (Proc. SIGGRAPH) 11(2), 509–518 (2006)

    Article  Google Scholar 

  26. Kriss, Michael: Handbook of Digital Imaging. Wiley, New York (2015)

    Book  Google Scholar 

  27. Lagae, A., Dutré, P.: An alternative for wang tiles: colored edges versus colored corners. ACM Trans. Graph. 25(4), 1442–1459 (2006)

    Article  Google Scholar 

  28. Lagae, A., Dutré, P.: A comparison of methods for generating Poisson disk distributions. Comput. Graph. Forum 27(1), 114–129 (2008)

    Article  Google Scholar 

  29. Lloyd, S.A.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, A., Morris, C.J., Taylor, J., Ebert, D.S., Hansen, C., Rheingans, P., Hartner, M.: Illustrative interactive stipple rendering. IEEE Trans. Vis. Comput. Graph. 9(2), 127–138 (2003)

    Article  Google Scholar 

  31. Martín, D., Arroyo, G., Rodríguez, A., Isenberg, T.: A survey of digital stippling. Comput. Graph. 67, 24–44 (2017)

    Article  Google Scholar 

  32. Mitsa, T., Parker, K.J.: Digital halftoning technique using a blue-noise mask. J. Opt. Soc. Am. A 9(11), 1920–1929 (1992)

    Article  Google Scholar 

  33. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51–70 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. J. Am. Stat. Assoc. 88(89), 147153 (1992)

    Google Scholar 

  35. Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. (Proc. SIGGRAPH) 23(3), 488–495 (2004)

    Article  Google Scholar 

  36. Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Sampling with polyominoes. ACM Trans. Graph. (Proc. SIGGRAPH) 26(3), 78:1–78:6 (2007)

    Article  Google Scholar 

  37. Pang, W.M., Qu, Y., Wong, T.T., Cohen-Or, D., Heng, P.A.: Structure-aware halftoning. ACM Trans. Graph. 27(3), 89:1–89:8 (2008)

    Article  MathSciNet  Google Scholar 

  38. Pnueli, Y., Bruckstein, A.M.: Gridless halftoning: a reincarnation of the old method. Graph. Models Image Process. 58(1), 38–64 (1996)

    Article  Google Scholar 

  39. Purgathofer, W., Tobler, R.F., Geiler, M.: Forced random dithering: improved threshold matrices for ordered dithering, Vol. 2. In: Proceedings of 1st International Conference on Image Processing, pp. 1032–1035 (1994)

  40. Schlömer, T., Heck, D., Deussen, O.: Farthest-point optimized point sets with maximized minimum distance. In: High Performance Graphics Proceedings, pp. 135–142 (2011)

  41. Schretter, C., Kobbelt, L., Dehaye, P.: Golden ratio sequences for low-discrepancy sampling. J. Graph. Tools 16(2), 95–104 (2012)

    Article  Google Scholar 

  42. Secord, A.: Weighted Voronoi stippling. In: Proceedings of the Second International Symposium on Non-photorealistic Animation and Rendering—NPAR ’02, 1, 37 (2002)

  43. Spicker, M., Hahn, F., Lindemeier, T., Saupe, D., Deussen, O.: Quantifying visual abstraction quality for stipple drawings. In: Proceedings of the Symposium on Non-photorealistic Animation and Rendering, NPAR ’17. ACM, New York, NY, USA, pp. 8:1–8:10 (2017)

  44. Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)

    Google Scholar 

  45. Ulichney, R.: Dithering with Blue Noise. MIT Press, Cambridge (1987)

    Google Scholar 

  46. Ulichney, R.: Void-and-cluster method for dither array generation. In: Proceedings of SPIE - The International Society for Optical Engineering, pp. 332–343 (1993)

  47. Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., Ostromoukhov, V.: Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. Graph. 33(4), 56:1–56:11 (2014)

    Article  MATH  Google Scholar 

  48. Wei, L.Y.: Multi-class blue noise sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 29(4), 79:1–79:8 (2010)

    Google Scholar 

  49. Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with hammersley and halton points. J. Graph. Tools 2(2), 9–24 (1997)

    Article  Google Scholar 

  50. Xu, Y., Liu, L., Gotsman, C., Gortler, S.J.: Capacity-constrained Delaunay triangulation for point distributions. Comput. Graph. 35(3), 510–516 (2011)

    Article  Google Scholar 

  51. Yan, D.M., Guo, J., Jia, X., Zhang, X., Wonka, P.: Blue-noise remeshing with farthest point optimization. Comput. Graph. Forum (Proc. SGP) 33(5), 167–176 (2014)

    Article  Google Scholar 

  52. Yan, D.M., Guo, J., Wang, B., Zhang, X., Wonka, P.: A survey of blue-noise sampling and its applications. J. Comput. Sci. Technol. 30(3), 439–452 (2015)

    Article  MathSciNet  Google Scholar 

  53. Yan, D.M., Wonka, P.: Gap processing for adaptive maximal Poisson-disk sampling. ACM Trans. Graph. 32(5), 148:1–148:15 (2013)

    Article  Google Scholar 

  54. Yuksel, C.: Sample elimination for generating Poisson disk sample sets. Comput. Graph. Forum 34(2), 25–32 (2015)

    Article  Google Scholar 

  55. Zhou, B., Fang, X.: Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM Trans. Graph. 22(3), 437–444 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by UGC (Grant number 4055060), joint NSFC grants (no. 61379087, 61602183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ma.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest to this work.

Additional information

Special thanks to Wenjuan Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2699 KB)

Supplementary material 2 (mp4 23292 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Chen, Y., Qian, Y. et al. Incremental Voronoi sets for instant stippling. Vis Comput 34, 863–873 (2018). https://doi.org/10.1007/s00371-018-1541-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1541-7

Keywords

Navigation