3D braid guide hair reconstruction using electroluminescent wires


In this paper we propose a novel braid acquisition and 3D guide hair reconstruction method. Low-cost electroluminescent wires are woven into the braided hair strands which are thereby illuminated from the inside. Unlike state-of-the-art hair reconstruction approaches, we do not need image texture information, data-driven prior knowledge or manual editing. Instead, our workflow reconstructs braid guide hairs fully automatically using semi-open-end 3D active curves on images recorded from multiple views. The proposed pipeline extracts non-surface, internal 3D information which enables morphing and inter-character hairdo-transfer. In state-of-the-art methods, those abilities typically exist for virtually created hairstyles and not for reconstructed hairstyles. Furthermore, using the new acquisition scheme we provide a novel type of data set to the community.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Bouguet, J.Y.: Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed 16 Jan 2018

  2. 2.

    Byoungwon, C., Hyeong-Seok, K.: A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. Vis. Comput. Gr. 11, 160–170 (2005). https://doi.org/10.1109/TVCG.2005.20

    Article  Google Scholar 

  3. 3.

    Chai, M., Luo, L., Sunkavalli, K., Carr, N., Hadap, S., Zhou, K.: High-quality hair modeling from a single portrait photo. ACM Trans. Gr. 34(6), 204:1–204:10 (2015). https://doi.org/10.1145/2816795.2818112

    Article  Google Scholar 

  4. 4.

    Chai, M., Shao, T., Wu, H., Weng, Y., Zhou, K.: AutoHair: fully automatic hair modeling from a single image. ACM Trans. Gr. 35(4), 116:1–116:12 (2016). https://doi.org/10.1145/2897824.2925961

    Article  Google Scholar 

  5. 5.

    Chai, M., Wang, L., Weng, Y., Jin, X., Zhou, K.: Dynamic hair manipulation in images and videos. ACM Trans. Gr. 32(4), 75:1–75:8 (2013). https://doi.org/10.1145/2461912.2461990

    Article  MATH  Google Scholar 

  6. 6.

    Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., Zhou, K.: Single-view hair modeling for portrait manipulation. ACM Trans. Gr. 31(4), 116:1–116:8 (2012). https://doi.org/10.1145/2185520.2185612

    Article  Google Scholar 

  7. 7.

    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). https://doi.org/10.1109/83.902291

    Article  MATH  Google Scholar 

  8. 8.

    Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991). https://doi.org/10.1016/1049-9660(91)90028-N

    Article  MATH  Google Scholar 

  9. 9.

    Destriau, G.: Recherches sur les scintillations des sulfures de zinc aux rayons. Journal de Chemie Physique 33, 587–625 (1936). https://doi.org/10.1051/jcp/1936330587

    Article  Google Scholar 

  10. 10.

    Hadap, S., Magnenat-Thalmann, N.: Interactive Hair Styler Based on Fluid Flow, pp. 87–99. Springer Vienna, Vienna (2000). https://doi.org/10.1007/978-3-7091-6344-3_7

    Google Scholar 

  11. 11.

    Herrera, T., Zinke, A., Weber, A.: Lighting hair from the inside: a thermal approach to hair reconstruction. ACM Trans. Gr. (2012). https://doi.org/10.1145/2366145.2366165

    Google Scholar 

  12. 12.

    Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. MIT Press, Cambridge (1989)

    Google Scholar 

  13. 13.

    Hu, L., Ma, C., Luo, L., Li, H.: Robust hair capture using simulated examples. ACM Trans. Gr. (2014). https://doi.org/10.1145/2601097.2601194

    MATH  Google Scholar 

  14. 14.

    Hu, L., Ma, C., Luo, L., Li, H.: Single-view hair modeling using a hairstyle database. ACM Trans. Gr. (2015). https://doi.org/10.1145/2766931

    Google Scholar 

  15. 15.

    Hu, L., Ma, C., Luo, L., Wei, L.Y., Li, H.: Capturing braided hairstyles. ACM Trans. Gr. 33(6), 225:1–225:9 (2014). https://doi.org/10.1145/2661229.2661254

    Google Scholar 

  16. 16.

    Ishikawa, T., Kazama, Y., Sugisaki, E., Morishima, S.: Hair motion reconstruction using motion capture system. In: ACM SIGGRAPH 2007 Posters, SIGGRAPH ’07. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1280720.1280722

  17. 17.

    Jakob, W., Moon, J.T., Marschner, S.: Capturing hair assemblies fiber by fiber. ACM Trans. Gr. 28(5), 164:1–164:9 (2009). https://doi.org/10.1145/1618452.1618510

    Article  Google Scholar 

  18. 18.

    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570

    Article  MATH  Google Scholar 

  19. 19.

    Laurentini, A.: The visual hull concept for Silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994). https://doi.org/10.1109/34.273735

    Article  Google Scholar 

  20. 20.

    Luo, L., Zhang, C., Zhang, Z., Rusinkiewicz, S.: Wide-baseline hair capture using strand-based refinement. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 265–272 (2013). https://doi.org/10.1109/CVPR.2013.41

  21. 21.

    Müller, O., Yang, M.Y., Rosenhahn, B.: Slice sampling particle belief propagation. In: 2013 IEEE International Conference on Computer Vision, pp. 1129–1136 (2013). https://doi.org/10.1109/ICCV.2013.144

  22. 22.

    Paris, S., Chang, W., Kozhushnyan, O.I., Jarosz, W., Matusik, W., Zwicker, M., Durand, F.: Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Gr. (2008). https://doi.org/10.1145/1360612.1360629

    Google Scholar 

  23. 23.

    Scheuermann, B., Rosenhahn, B.: Multi-sensor fusion for video segmentation. Int. J. Pattern Recognit. Artif. Intell. 28(7), 14 (2014). https://doi.org/10.1142/S0218001414600155

    Article  Google Scholar 

  24. 24.

    Smith, M.B., Li, H., Shenand, T., Huang, X., Yusuf, E., Vavylonis, D.V.: Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton 67, 693–705 (2010). https://doi.org/10.1002/cm.20481

    Article  Google Scholar 

  25. 25.

    von Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: automatic 3D human pose estimation from sparse imus. Comput. Gr. Forum 36(2), 349–360 (2017). https://doi.org/10.1111/cgf.13131

    Article  Google Scholar 

  26. 26.

    Wang, L., Yu, Y., Zhou, K., Guo, B.: Example-based hair geometry synthesis. ACM Trans. Gr. 28(3), 56:1–56:9 (2009). https://doi.org/10.1145/1531326.1531362

    Google Scholar 

  27. 27.

    Ward, K., Bertails, F., Kim, T.Y., Marschner, S.R., Cani, M.P., Lin, M.C.: A survey on hair modeling: styling, simulation, and rendering. In: IEEE Transactions on Visualization and Computer Graphics, pp. 213–234 (2006). https://doi.org/10.1109/TVCG.2007.30

  28. 28.

    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998). https://doi.org/10.1109/83.661186

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Yu, Y.: Modeling realistic virtual hairstyles. Pac. Conf. Comput. Gr. Appl. 00, 295 (2001). https://doi.org/10.1109/PCCGA.2001.962885

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hendrik Hachmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hachmann, H., Awiszus, M. & Rosenhahn, B. 3D braid guide hair reconstruction using electroluminescent wires. Vis Comput 34, 793–804 (2018). https://doi.org/10.1007/s00371-018-1526-6

Download citation


  • Hair modeling
  • Image-based modeling
  • 3D reconstruction
  • Braids