Advertisement

The Visual Computer

, Volume 34, Issue 6–8, pp 1087–1098 | Cite as

Cross-table linking and brushing: interactive visual analysis of multiple tabular data sets

  • Rainer Splechtna
  • Michael Beham
  • Denis Gračanin
  • María Luján GanuzaEmail author
  • Katja Bühler
  • Igor Sunday Pandžić
  • Krešimir Matković
Original Article
  • 128 Downloads

Abstract

Studying complex problems often requires identifying and exploring connections and dependencies among several, seemingly unrelated, data sets. Those data sets are often represented as data tables. We propose a novel approach to studying such data sets using linking and brushing across multiple data tables in a coordinated multiple views system. We first identify possible mappings from a subset of one data set to a subset of another data set. That collection of mappings is then used to specify linking among data sets and to support brushing across data sets. Brushing in one data set is then mapped to a brush in the destination data set. If the brush is refined in the destination data set, the inverse mapping, or a back-link, is used to determine the refined brush in the original data set. Brushing and back-links make it possible to efficiently create and analyze complex queries interactively in an iterative process. That process is further supported by a user interface that keeps track of the mappings, links and brushes. The proposed approach is evaluated using three data sets.

Keywords

Visual analytics Interactive visual analysis Multiple data sets analysis 

Notes

Funding

This study was funded by BMVIT, BMWFW, Styria, SFG and Vienna Business Agency in the scope of COMET (854174).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (wmv 33514 KB)

References

  1. 1.
    Becker, R.A., Cleveland, W.S.: Brushing scatterplots. Technometrics 29(2), 127–142 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Card, S.K., Mackinlay, J., Shneiderman, B. (eds.): Readings in Information Visualization: Using Vision to Think. Interactive Technologies. Morgan Kaufmann, San Francisco (1999)Google Scholar
  3. 3.
    Cavalcanti, V.M.B., Schiel, U., de Souza Baptista, C.: Querying spatio-temporal databases using a visual environment. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 412–419. ACM, New York (2006)Google Scholar
  4. 4.
    Cerullo, C., Porta, M.: A system for database visual querying and query visualization: Complementing text and graphics to increase expressiveness. In: Proceedings of the 18th International Workshop on Database and Expert Systems Applications (DEXA 2007), pp. 109–113 (2007)Google Scholar
  5. 5.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)CrossRefzbMATHGoogle Scholar
  6. 6.
    Date, C.J., Darwen, H.: A Guide to SQL Standard, 4th edn. Addison-Wesley Professional, Boston (1997)Google Scholar
  7. 7.
    Della Penna, G., Magazzeni, D., Orefice, S.: A general theory of spatial relations to support a graphical tool for visual information extraction. J. Vis. Lang. Comput. 24(2), 71–87 (2013)CrossRefGoogle Scholar
  8. 8.
    Doleisch, H., Gasser, M., Hauser, H.: Interactive feature specification for focus+context visualization of complex simulation data. In: G.P. Bonneau, S. Hahmann, C.D. Hansen (eds.) Proceedings of the Joint EUROGRAPHICS—IEEE TCVG Symposium on Visualization, pp. 239–248. The Eurographics Association (2003)Google Scholar
  9. 9.
    Fisherkeller, M.A., Friedman, J.H., Tukey, J.W.: PRIM-9: an interactive multidimensional data display and analysis system (1974). In: W.S. Cleveland, M.E. McGill (eds.) Dynamic Graphics for Statistics, chap. 3, pp. 91–110. CRC Press (1988)Google Scholar
  10. 10.
    Ganuza, M.L., Ferracutti, G., Gargiulo, M.F., Castro, S.M., Bjerg, E., Gröller, E., Matković, K.: The spinel explorer—interactive visual analysis of spinel group minerals. IEEE Trans. Vis. Comput. Graph. 20(12), 1913–1922 (2014)CrossRefGoogle Scholar
  11. 11.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book, second edn, p. 07458. Prentice Hall, Upper Saddle River (2009)Google Scholar
  12. 12.
    Hauser, H., Ledermann, F., Doleisch, H.: Angular brushing of extended parallel coordinates. In: Proceedings of the 2002 IEEE Symposium on Information Visualization (INFOVIS 2002), pp. 127–130 (2002)Google Scholar
  13. 13.
    Konyha, Z., Matković, K., Gračanin, D., Jelović, M., Hauser, H.: Interactive visual analysis of families of function graphs. IEEE Trans. Vis. Comput. Graph. 12(6), 1373–1385 (2006)CrossRefGoogle Scholar
  14. 14.
    Kosara, R., Hauser, H., Gresh, D.L.: An interaction view on information visualization. In: Proceedings of the Eurographics State-of-the-Art 2003 (EG 2003), pp. 123–137 (2003)Google Scholar
  15. 15.
    Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml. University of California, Irvine, School of Information and Computer Sciences (2013). Accessed 21 Jan 2018
  16. 16.
    Lin, S., Fortuna, J., Kulkarni, C., Stone, M., Heer, J.: Selecting semantically-resonant colors for data visualization. In: Proceedings of the 15th Eurographics Conference on Visualization, pp. 401–410. The Eurographics Association, Chichester, UK (2013)Google Scholar
  17. 17.
    Liu, Z., Navathe, S.B., Stasko, J.T.: Network-based visual analysis of tabular data. In: Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 41–50 (2011)Google Scholar
  18. 18.
    Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India II(1), 49–55 (1936)zbMATHGoogle Scholar
  19. 19.
    Martin, A.R., Ward, M.O.: High dimensional brushing for interactive exploration of multivariate data. In: Proceedings of the IEEE Conference on Visualization (Visualization’95), pp. 271–278 (1995)Google Scholar
  20. 20.
    Matkovic, K., Freiler, W., Gracanin, D., Hauser, H.: Comvis: a coordinated multiple views system for prototyping new visualization technology. In: Information Visualisation, 2008. IV’08. 12th International Conference, pp. 215–220. IEEE (2008)Google Scholar
  21. 21.
    McLachlan, G.J.: Mahalanobis distance. Resonance 4(6), 20–26 (1999)CrossRefGoogle Scholar
  22. 22.
    NOAA: land-based datasets and products. http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets. National Centers for Environmental Information (2018). Accessed 21 Jan 2018
  23. 23.
    North, C., Shneiderman, B.: Snap-together visualization: a user interface for coordinating visualizations via relational schemata. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 128–135. ACM, New York (2000)Google Scholar
  24. 24.
    Pace, R.K., Barry, R.: Sparse spatial autoregressions. Stat. Probab. Lett. 33(3), 291–297 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Radoš, S., Splechtna, R., Matković, K., Đuras, M., Gröller, E., Hauser, H.: Towards quantitative visual analytics with structured brushing and linked statistics. Comput. Graph. Forum 35(3), 251–260 (2016)CrossRefGoogle Scholar
  26. 26.
    Shadoan, R., Weaver, C.: Visual analysis of higher-order conjunctive relationships in multidimensional data using a hypergraph query system. IEEE Trans. Vis. Comput. Graph. 19(12), 2070–2079 (2013)CrossRefGoogle Scholar
  27. 27.
    Splechtna, R., Matković, K., Gračanin, D., Jelović, M., Hauser, H.: Interactive visual steering of hierarchical simulation ensembles. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2015), pp. 89–96 (2015)Google Scholar
  28. 28.
    Turkay, C., Filzmoser, P., Hauser, H.: Brushing dimensions—a dual visual analysis model for high-dimensional data. IEEE Trans. Vis. Comput. Graph. 17(12), 2591–2599 (2011)CrossRefGoogle Scholar
  29. 29.
    Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. 23(176), 88–93 (1975)CrossRefGoogle Scholar
  30. 30.
    Weaver, C.: Building highly-coordinated visualizations in improvise. In: Proceedings of the 2004 IEEE Symposium on Information Visualization, pp. 159–166 (2004)Google Scholar
  31. 31.
    Weaver, C.: Cross-filtered views for multidimensional visual analysis. IEEE Trans. Vis. Comput. Graph. 16(2), 192–204 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.VRVis Research CenterViennaAustria
  2. 2.Virginia TechBlacksburgUSA
  3. 3.VyGLab Research Laboratory, DCICUNSBahía BlancaArgentina
  4. 4.University of ZagrebZagrebCroatia

Personalised recommendations