The Visual Computer

, Volume 35, Issue 5, pp 707–720 | Cite as

Photon mapping with visible kernel domains

  • Romuald Perrot
  • Lilian Aveneau
  • Frédéric Mora
  • Daniel MeneveauxEmail author
Original Article


Despite the strong efforts made in the last three decades, lighting simulation systems still remain prone to various types of imprecisions. This paper specifically tackles the problem of biases due to density estimation used in photon mapping approaches. We study the fundamental aspects of density estimation and exhibit the need for handling visibility in the early stage of the kernel domain definition. We show that properly managing visibility in the density estimation process allows to reduce or to remove biases all at once. In practice, we have implemented a 3D product kernel based on a polyhedral domain, with both point-to-point and point-to-surface visibility computation. Our experimental results illustrate the enhancements produced at every stage of density estimation, for direct photon maps visualization and progressive photon mapping.


Lighting simulation Photon mapping Density estimation Visibility 


  1. 1.
    Bekaert, P., Slusallek, P., Cools, R., Havran, V., Seidel, H.P.: A custom designed density estimation method for light transport. Technical Report MPI-I-2003-4-004, Max-Planck-Institut für Informatik, Saarbrücken (2003)Google Scholar
  2. 2.
    Chen, L.H., Tsai, T.C., Chen, Y.S.: Grouped photon mapping. Vis. Comput. 26, 217–226 (2010)CrossRefGoogle Scholar
  3. 3.
    Dammertz, H., Hanika, J., Keller, A.: Shallow bounding volume hierarchies for fast SIMD ray tracing of incoherent rays. Comput. Graph. Forum 27(4), 1225–1233 (2008)CrossRefGoogle Scholar
  4. 4.
    Dutre, P., Bala, K., Bekaert, P., Shirley, P.: Advanced Global Illumination. AK Peters Ltd, Natick (2006)CrossRefGoogle Scholar
  5. 5.
    Georgiev, I., Křivánek, J., Davidovič, T., Slusallek, P.: Light transport simulation with vertex connection and merging. ACM TOG Proc. SIGGRAPH Asia 31(6), 192 (2012)Google Scholar
  6. 6.
    Hachisuka, T., Ogaki, S., Jensen, H.W.: Progressive photon mapping. ACM TOG Proc. ACM SIGGRAPH Asia 27(5), 30 (2008)Google Scholar
  7. 7.
    Hachisuka, T., Pantaleoni, J., Jensen, H.W.: A path space extension for robust light transport simulation. ACM TOG Proc. SIGGRAPH Asia 31(6), 191 (2012)Google Scholar
  8. 8.
    Haumont, D., Mäkinen, O., Nirenstein, S.: A low dimensional framework for exact polygon-to-polygon occlusion queries. In: Eurographics Symposium on Rendering Techniques, pp. 211–222 (2005)Google Scholar
  9. 9.
    Havran, V., Bittner, J., Herzog, R., Seidel, H.P.: Ray maps for global illumination. In: Eurographics Symposium on Rendering Techniques, pp. 43–54 (2005)Google Scholar
  10. 10.
    Herzog, R.: Advanced density estimation techniques for global illumination. Master’s thesis, Universität des Saarlandes (MPI Informatik) (2005)Google Scholar
  11. 11.
    Izenman, A.: Modern Multivariate Statistical Techniques, Regression, Classification, and Manifold Learning. Springer, New-York (2008)zbMATHGoogle Scholar
  12. 12.
    Jensen, H.W.: Global illumination using photon maps. In: Eurographics Workshop on Rendering Techniques, pp. 21–30 (1996)Google Scholar
  13. 13.
    Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd, Natick (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jones, M.C.: Simple boundary correction for kernel density estimation. Stat. Comput. 3(3), 135–146 (1993)CrossRefGoogle Scholar
  15. 15.
    Kajiya, J.T.: The rendering equation. In: ACM SIGGRAPH (1986)Google Scholar
  16. 16.
    Knaus, C., Zwicker, M.: Progressive photon mapping: a probabilistic approach. ACM TOG 30(3), 25 (2011)CrossRefGoogle Scholar
  17. 17.
    Lastra, M., Ureña, C., Revelles, J., Montes, R.: A particle-path based method for Monte-Carlo density estimation. In: Eurographics Workshop on Rendering Techniques (2002)Google Scholar
  18. 18.
    Lavignotte, F., Paulin, M.: A new approach of density estimation for global illumination. In: WSCG, Plzen , Czech Republic, pp. 263–273 (2002)Google Scholar
  19. 19.
    Lavignotte, F., Paulin, M.: Scalable photon splatting for global illumination. In: GRAPHITE ’03. ACM, New York (2003)Google Scholar
  20. 20.
    Mora, F., Aveneau, L., Apostu, O.L., Ghazanfarpour, D.: Lazy visibility evaluation for exact soft shadows. Comput. Graph. Forum 31(1), 132–145 (2012)CrossRefGoogle Scholar
  21. 21.
    Nirenstein, S., Blake, E., Gain, J.: Exact from-region visibility culling. In: Eurographics Workshop on Rendering Techniques (2002)Google Scholar
  22. 22.
    Pharr, M., Humphreys, G.: Physically Based Rendering, Second Edition: From Theory to Implementation, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)Google Scholar
  23. 23.
    Qin, H., Sun, X., Hou, Q., Guo, B., Zhou, K.: Unbiased photon gathering for light transport simulation. ACM TOG Proc. SIGGRAPH 34(6), 208 (2015)Google Scholar
  24. 24.
    Schregle, R.: Bias compensation for photon maps. Comput. Graph. Forum 22, 729–742 (2003)CrossRefGoogle Scholar
  25. 25.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, Boca Raton (1998)Google Scholar
  26. 26.
    Teller, S., Hanrahan, P.: Global visibility algorithms for illumination computations. In: ACM SIGGRAPH (1993)Google Scholar
  27. 27.
    Tobler, R.F., Maierhofer, S.: Improved illumination estimation for photon maps in architectural scenes. In: WSCG pp. 257–261 (2006)Google Scholar
  28. 28.
    Veach, E.: Robust Monte–Carlo methods for light transport simulation. Ph.D. thesis, Stanford University (1997)Google Scholar
  29. 29.
    Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree: a kernel framework for efficient CPU ray tracing. ACM TOG Proc. ACM SIGGRAPH 33(4), 143 (2014)Google Scholar
  30. 30.
    Wand, M.P., Jones, M.C.: Kernel Smoothing, Monographs on Statistics and Applied Probability, vol. 60. Chapman and Hall, London (1995)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.XLIM/ASALI – UMR CNRS 7252University of PoitiersPoitiersFrance
  2. 2.XLIM/ASALI – UMR CNRS 7252University of LimogesLimogesFrance

Personalised recommendations