# Inverse appearance modeling of interwoven cloth

- 318 Downloads

## Abstract

This paper proposes an inverse approach for modeling the appearance of interwoven cloth. Creating the desired appearance in cloth is difficult because many factors, such as the type of thread and the weaving pattern, have to be considered. Design tools that enable the desired visual appearance of the cloth to be replicated are therefore beneficial for many computer graphics applications. In this paper, we focus on the design of the appearance of interwoven cloth whose reflectance properties are significantly affected by the weaving patterns. Although there are several systems that support editing of weaving patterns, they lack an inverse design tool that automatically determines the spatially varying bidirectional reflectance distribution function (BRDF) from the weaving patterns required to make the cloth display the desired appearance. We propose a method for computing the cloth BRDFs that can be used to display the desired image provided by the user. We formulate this problem as a cost minimization and solve it by computing the shortest path of a graph. We demonstrate the effectiveness of the method with several examples.

## Keywords

Cloth rendering Inverse approach BRDF## Notes

### Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP15H05924.

## Supplementary material

Supplementary material 1 (mp4 123871 KB)

## References

- 1.Adabala, N., Magnenet-Thalmann, N., Fei, G.: Real-time rendering of woven cloth. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology 2003 (VRST’03), pp. 41–47 (2003)Google Scholar
- 2.Adabala, N., Magnenet-Thalmann, N., Fei, G.: Visualization of woven cloth. In: Proceedings of the 14th Eurographics Workshop on Rendering (EGWR’03), pp. 178–185 (2003)Google Scholar
- 3.Alexa, M., Matusik, W.: Reliefs as images. ACM Trans. Graph.
**29**(4), 60:1–60:7 (2010)CrossRefGoogle Scholar - 4.Aliaga, C., Castillo, C., Gutierrez, D., Otaduy, M.A., Lopez-Moreno, J., Jarabo, A.: An appearance model for textile fibers. Comput. Graph. Forum
**36**(4), 35–45 (2017)CrossRefGoogle Scholar - 5.Ashikhmin, M., Premože, S., Shirley, P.: A microfacet-based BRDF generator. In: Proceedings of SIGGRAPH’00, pp. 65–74 (2000)Google Scholar
- 6.Bermano, A., Baran, I., Alexa, M., Matusk, W.: Shadowpix: multiple images from self shadowing. Comput. Graph. Forum
**31**(2), 593–602 (2012)CrossRefGoogle Scholar - 7.Breen, D.E., House, D.H., Getto, P.H.: A physically-based particle model of woven cloth. Vis. Comput.
**8**(5), 264–277 (1992). https://doi.org/10.1007/BF01897114. CrossRefGoogle Scholar - 8.Chen, M., Tang, K.: A fully geometric approach for developable cloth deformation simulation. Vis. Comput.
**26**(6), 853–863 (2010). https://doi.org/10.1007/s00371-010-0467-5. CrossRefGoogle Scholar - 9.Chen, Y., Magnenat Thalmann, N., Foster Allen, B.: Physical simulation of wet clothing for virtual humans. Vis. Comput.
**28**(6), 765–774 (2012). https://doi.org/10.1007/s00371-012-0687-y. CrossRefGoogle Scholar - 10.Cirio, G., Lopez-Moreno, J., Miraut, D., Otaduy, M.A.: Yarn-level simulation of woven cloth. ACM Trans. Graph.
**33**(6), 207:1–207:11 (2014)CrossRefGoogle Scholar - 11.Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
- 12.Das, S., Ghosh, A., Banerjee, D.: Engineering design of woven fabrics using non-traditional optimization methods: a comparative study. Fibers Polym.
**14**(9), 1562–1567 (2013)CrossRefGoogle Scholar - 13.Hašan, M., Ramamoorthi, R.: Interactive albedo editing in path-traced volumetric materials. ACM Trans. Graph.
**32**(2), 11:1–11:11 (2013)zbMATHGoogle Scholar - 14.Huh, S.B., Metaxas, D.N.: A collision resolution algorithm for clump-free fast moving cloth. Vis. Comput.
**22**(6), 434–444 (2006). https://doi.org/10.1007/s00371-006-0019-1 CrossRefGoogle Scholar - 15.Irawan, P., Marschner, S.: Specular reflection from woven cloth. ACM Trans. Graph.
**31**(1), 11:1–11:20 (2012)CrossRefGoogle Scholar - 16.Iwasaki, K., Dobashi, Y., Nishita, T.: Interactive bi-scale editing of highly glossy materials. ACM Trans. Graph.
**31**(6), 144:1–144:7 (2012)CrossRefGoogle Scholar - 17.Jakob, W., Arbree, A., Moon, J.T., Bala, K., Marschner, S.: A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph.
**29**(4), 53:1–53:13 (2010)CrossRefGoogle Scholar - 18.Jeong, S., Kim, T., Kim, C.H.: Shrinkage, wrinkling and ablation of burning cloth and paper. Vis. Comput.
**27**(6), 417–427 (2011). https://doi.org/10.1007/s00371-011-0575-x CrossRefGoogle Scholar - 19.Kaldor, J.M., James, D.L., Marschner, S.: Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph.
**29**(4), 105:1–105:10 (2010)CrossRefGoogle Scholar - 20.Kang, Y.M., Choi, J.H., Cho, H.G., Lee, D.H.: An efficient animation of wrinkled cloth with approximate implicit integration. Vis. Comput.
**17**(3), 147–157 (2001). https://doi.org/10.1007/s003710100103. CrossRefzbMATHGoogle Scholar - 21.Khungurn, P., Schroeder, D., Zhao, S., Bala, K., Marschner, S.: Matching real fabrics with micro-appearance models. ACM Trans. Graph.
**35**(1), 1:1–1:26 (2015)CrossRefGoogle Scholar - 22.Lin, J.J.: A GA-based search approach to creative weave structure design. J. Inf. Sci. Eng.
**24**(3), 949–963 (2008)Google Scholar - 23.Luan, F., Zhao, S., Bala, K.: Fiber-level on-the-fly procedural textiles. Comput. Graph. Forum
**36**(4), 123–135 (2017)CrossRefGoogle Scholar - 24.Magnenat-Thalmann, N., Volino, P.: From early draping to haute couture models: 20 years of research. Vis. Comput.
**21**(8), 506–519 (2005). https://doi.org/10.1007/s00371-005-0347-6. CrossRefGoogle Scholar - 25.Mitra, N.J., Pauly, M.: Shadow art. ACM Trans. Graph.
**28**(5), 156:1–156:7 (2009)Google Scholar - 26.Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., Weyrich, T.: Goal-based caustics. Comput. Graph. Forum
**30**(2), 503–511 (2011)CrossRefGoogle Scholar - 27.Sadeghi, I., Bisker, O., de Deken, J., Jensen, H.W.: A practical microcylinder appearance model for cloth rendering. ACM Trans. Graph.
**32**(2), 14:1–14:12 (2013)CrossRefzbMATHGoogle Scholar - 28.Schröder, K., Klein, R., Zinke, A.: A volumetric approach to predictive rendering of fabrics. Comput. Graph. Forum
**30**(4), 1277–1286 (2011)CrossRefGoogle Scholar - 29.Schröder, K., Zhao, S., Zinke, A.: Recent advances in physically-based appearance modeling of cloth. In: SIGGRAPH Asia 2012 Courses, SA ’12, pp. 12:1–12:52 (2012)Google Scholar
- 30.Schröder, K., Zinke, A., Klein, R.: Image-based reverse engineering and visual prototyping of woven cloth. IEEE Trans. Vis. Comput. Graph.
**21**(2), 188–200 (2015)CrossRefGoogle Scholar - 31.Schwartzburg, Y., Testuz, R., Tagliasacchi, A., Pauly, M.: High-contrast computational caustic design. ACM Trans. Graph.
**33**(4), 74:1–74:11 (2014)CrossRefGoogle Scholar - 32.Velinov, Z., Hullin, M.B.: An interactive appearance model for microscopic fiber surfaces. In: Vision, Modeling, and Visualization 2016 (2016)Google Scholar
- 33.Wang, J., Zhao, S., Tong, X., Snyder, J., Guo, B.: Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph.
**27**(3), 41:1–41:9 (2008)Google Scholar - 34.Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. In: Proceedings of the SIGGRAPH’92, pp. 255–264 (1992)Google Scholar
- 35.Wu, H., Dorsey, J., Rushmeier, H.: Physically-based interactive bi-scale material design. ACM Trans. Graph.
**30**(6), 145:1–145:10 (2011)Google Scholar - 36.Wu, H., Dorsey, J., Rushmeier, H.: Inverse bi-scale material design. ACM Trans. Graph.
**32**(6), 163:1–163:10 (2013)Google Scholar - 37.Yue, Y., Iwasaki, K., Chen, B.Y., Dobashi, Y., Nishita, T.: Pixel art with refracted light by rearrangeable sticks. Comput. Graph. Forum
**31**(2), 575–582 (2012)CrossRefGoogle Scholar - 38.Yue, Y., Iwasaki, K., Chen, B.Y., Dobashi, Y., Nishita, T.: Poisson-based continuous surface generation for goal-based caustics. ACM Trans. Graph.
**33**(3), 31:1–31:7 (2014)CrossRefzbMATHGoogle Scholar - 39.Yuksel, C., Kaldor, J.M., James, D.L., Marschner, S.: Stitch meshes for modeling knitted clothing with yarn-level detail. ACM Trans. Graph.
**31**(3), 37:1–37:12 (2012)Google Scholar - 40.Zhang, J., Xin, B., Wu, X.: A review of fabric identification based on image analysis technology. Text. Light Ind. Sci. Technol. TLIST
**2**(3), 120–130 (2013)Google Scholar - 41.Zhang, R., Xin, B.: A review of woven fabric pattern recognition based on image processing technology. Res. J. Text. Appar.
**20**(1), 37–47 (2016)MathSciNetCrossRefGoogle Scholar - 42.Zhao, S., Hašan, M., Ramamoorthi, R., Bala, K.: Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM Trans. Graph.
**32**(4), 131:1–131:12 (2013)zbMATHGoogle Scholar - 43.Zhao, S., Jakob, W., Marschner, S., Bala, K.: Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph.
**30**(4), 44:1–44:10 (2011)CrossRefGoogle Scholar - 44.Zhao, S., Jakob, W., Marschner, S., Bala, K.: Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph.
**31**(4), 75:1–75:10 (2012)CrossRefGoogle Scholar - 45.Zhao, S., Luan, F., Bala, K.: Fitting procedural yarn models for realistic cloth rendering. ACM Trans. Graph.
**35**(4), 51:1–51:11 (2016)Google Scholar