Inverse appearance modeling of interwoven cloth

  • Yoshinori Dobashi
  • Kei Iwasaki
  • Makoto Okabe
  • Takashi Ijiri
  • Hideki Todo
Original Article


This paper proposes an inverse approach for modeling the appearance of interwoven cloth. Creating the desired appearance in cloth is difficult because many factors, such as the type of thread and the weaving pattern, have to be considered. Design tools that enable the desired visual appearance of the cloth to be replicated are therefore beneficial for many computer graphics applications. In this paper, we focus on the design of the appearance of interwoven cloth whose reflectance properties are significantly affected by the weaving patterns. Although there are several systems that support editing of weaving patterns, they lack an inverse design tool that automatically determines the spatially varying bidirectional reflectance distribution function (BRDF) from the weaving patterns required to make the cloth display the desired appearance. We propose a method for computing the cloth BRDFs that can be used to display the desired image provided by the user. We formulate this problem as a cost minimization and solve it by computing the shortest path of a graph. We demonstrate the effectiveness of the method with several examples.


Cloth rendering Inverse approach BRDF 



This work was supported by JSPS KAKENHI Grant Number JP15H05924.

Supplementary material

Supplementary material 1 (mp4 123871 KB)


  1. 1.
    Adabala, N., Magnenet-Thalmann, N., Fei, G.: Real-time rendering of woven cloth. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology 2003 (VRST’03), pp. 41–47 (2003)Google Scholar
  2. 2.
    Adabala, N., Magnenet-Thalmann, N., Fei, G.: Visualization of woven cloth. In: Proceedings of the 14th Eurographics Workshop on Rendering (EGWR’03), pp. 178–185 (2003)Google Scholar
  3. 3.
    Alexa, M., Matusik, W.: Reliefs as images. ACM Trans. Graph. 29(4), 60:1–60:7 (2010)CrossRefGoogle Scholar
  4. 4.
    Aliaga, C., Castillo, C., Gutierrez, D., Otaduy, M.A., Lopez-Moreno, J., Jarabo, A.: An appearance model for textile fibers. Comput. Graph. Forum 36(4), 35–45 (2017)CrossRefGoogle Scholar
  5. 5.
    Ashikhmin, M., Premože, S., Shirley, P.: A microfacet-based BRDF generator. In: Proceedings of SIGGRAPH’00, pp. 65–74 (2000)Google Scholar
  6. 6.
    Bermano, A., Baran, I., Alexa, M., Matusk, W.: Shadowpix: multiple images from self shadowing. Comput. Graph. Forum 31(2), 593–602 (2012)CrossRefGoogle Scholar
  7. 7.
    Breen, D.E., House, D.H., Getto, P.H.: A physically-based particle model of woven cloth. Vis. Comput. 8(5), 264–277 (1992). CrossRefGoogle Scholar
  8. 8.
    Chen, M., Tang, K.: A fully geometric approach for developable cloth deformation simulation. Vis. Comput. 26(6), 853–863 (2010). CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Magnenat Thalmann, N., Foster Allen, B.: Physical simulation of wet clothing for virtual humans. Vis. Comput. 28(6), 765–774 (2012). CrossRefGoogle Scholar
  10. 10.
    Cirio, G., Lopez-Moreno, J., Miraut, D., Otaduy, M.A.: Yarn-level simulation of woven cloth. ACM Trans. Graph. 33(6), 207:1–207:11 (2014)CrossRefGoogle Scholar
  11. 11.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  12. 12.
    Das, S., Ghosh, A., Banerjee, D.: Engineering design of woven fabrics using non-traditional optimization methods: a comparative study. Fibers Polym. 14(9), 1562–1567 (2013)CrossRefGoogle Scholar
  13. 13.
    Hašan, M., Ramamoorthi, R.: Interactive albedo editing in path-traced volumetric materials. ACM Trans. Graph. 32(2), 11:1–11:11 (2013)zbMATHGoogle Scholar
  14. 14.
    Huh, S.B., Metaxas, D.N.: A collision resolution algorithm for clump-free fast moving cloth. Vis. Comput. 22(6), 434–444 (2006). CrossRefGoogle Scholar
  15. 15.
    Irawan, P., Marschner, S.: Specular reflection from woven cloth. ACM Trans. Graph. 31(1), 11:1–11:20 (2012)CrossRefGoogle Scholar
  16. 16.
    Iwasaki, K., Dobashi, Y., Nishita, T.: Interactive bi-scale editing of highly glossy materials. ACM Trans. Graph. 31(6), 144:1–144:7 (2012)CrossRefGoogle Scholar
  17. 17.
    Jakob, W., Arbree, A., Moon, J.T., Bala, K., Marschner, S.: A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29(4), 53:1–53:13 (2010)CrossRefGoogle Scholar
  18. 18.
    Jeong, S., Kim, T., Kim, C.H.: Shrinkage, wrinkling and ablation of burning cloth and paper. Vis. Comput. 27(6), 417–427 (2011). CrossRefGoogle Scholar
  19. 19.
    Kaldor, J.M., James, D.L., Marschner, S.: Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29(4), 105:1–105:10 (2010)CrossRefGoogle Scholar
  20. 20.
    Kang, Y.M., Choi, J.H., Cho, H.G., Lee, D.H.: An efficient animation of wrinkled cloth with approximate implicit integration. Vis. Comput. 17(3), 147–157 (2001). CrossRefzbMATHGoogle Scholar
  21. 21.
    Khungurn, P., Schroeder, D., Zhao, S., Bala, K., Marschner, S.: Matching real fabrics with micro-appearance models. ACM Trans. Graph. 35(1), 1:1–1:26 (2015)CrossRefGoogle Scholar
  22. 22.
    Lin, J.J.: A GA-based search approach to creative weave structure design. J. Inf. Sci. Eng. 24(3), 949–963 (2008)Google Scholar
  23. 23.
    Luan, F., Zhao, S., Bala, K.: Fiber-level on-the-fly procedural textiles. Comput. Graph. Forum 36(4), 123–135 (2017)CrossRefGoogle Scholar
  24. 24.
    Magnenat-Thalmann, N., Volino, P.: From early draping to haute couture models: 20 years of research. Vis. Comput. 21(8), 506–519 (2005). CrossRefGoogle Scholar
  25. 25.
    Mitra, N.J., Pauly, M.: Shadow art. ACM Trans. Graph. 28(5), 156:1–156:7 (2009)Google Scholar
  26. 26.
    Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., Weyrich, T.: Goal-based caustics. Comput. Graph. Forum 30(2), 503–511 (2011)CrossRefGoogle Scholar
  27. 27.
    Sadeghi, I., Bisker, O., de Deken, J., Jensen, H.W.: A practical microcylinder appearance model for cloth rendering. ACM Trans. Graph. 32(2), 14:1–14:12 (2013)CrossRefzbMATHGoogle Scholar
  28. 28.
    Schröder, K., Klein, R., Zinke, A.: A volumetric approach to predictive rendering of fabrics. Comput. Graph. Forum 30(4), 1277–1286 (2011)CrossRefGoogle Scholar
  29. 29.
    Schröder, K., Zhao, S., Zinke, A.: Recent advances in physically-based appearance modeling of cloth. In: SIGGRAPH Asia 2012 Courses, SA ’12, pp. 12:1–12:52 (2012)Google Scholar
  30. 30.
    Schröder, K., Zinke, A., Klein, R.: Image-based reverse engineering and visual prototyping of woven cloth. IEEE Trans. Vis. Comput. Graph. 21(2), 188–200 (2015)CrossRefGoogle Scholar
  31. 31.
    Schwartzburg, Y., Testuz, R., Tagliasacchi, A., Pauly, M.: High-contrast computational caustic design. ACM Trans. Graph. 33(4), 74:1–74:11 (2014)CrossRefGoogle Scholar
  32. 32.
    Velinov, Z., Hullin, M.B.: An interactive appearance model for microscopic fiber surfaces. In: Vision, Modeling, and Visualization 2016 (2016)Google Scholar
  33. 33.
    Wang, J., Zhao, S., Tong, X., Snyder, J., Guo, B.: Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27(3), 41:1–41:9 (2008)Google Scholar
  34. 34.
    Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. In: Proceedings of the SIGGRAPH’92, pp. 255–264 (1992)Google Scholar
  35. 35.
    Wu, H., Dorsey, J., Rushmeier, H.: Physically-based interactive bi-scale material design. ACM Trans. Graph. 30(6), 145:1–145:10 (2011)Google Scholar
  36. 36.
    Wu, H., Dorsey, J., Rushmeier, H.: Inverse bi-scale material design. ACM Trans. Graph. 32(6), 163:1–163:10 (2013)Google Scholar
  37. 37.
    Yue, Y., Iwasaki, K., Chen, B.Y., Dobashi, Y., Nishita, T.: Pixel art with refracted light by rearrangeable sticks. Comput. Graph. Forum 31(2), 575–582 (2012)CrossRefGoogle Scholar
  38. 38.
    Yue, Y., Iwasaki, K., Chen, B.Y., Dobashi, Y., Nishita, T.: Poisson-based continuous surface generation for goal-based caustics. ACM Trans. Graph. 33(3), 31:1–31:7 (2014)CrossRefzbMATHGoogle Scholar
  39. 39.
    Yuksel, C., Kaldor, J.M., James, D.L., Marschner, S.: Stitch meshes for modeling knitted clothing with yarn-level detail. ACM Trans. Graph. 31(3), 37:1–37:12 (2012)Google Scholar
  40. 40.
    Zhang, J., Xin, B., Wu, X.: A review of fabric identification based on image analysis technology. Text. Light Ind. Sci. Technol. TLIST 2(3), 120–130 (2013)Google Scholar
  41. 41.
    Zhang, R., Xin, B.: A review of woven fabric pattern recognition based on image processing technology. Res. J. Text. Appar. 20(1), 37–47 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhao, S., Hašan, M., Ramamoorthi, R., Bala, K.: Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM Trans. Graph. 32(4), 131:1–131:12 (2013)zbMATHGoogle Scholar
  43. 43.
    Zhao, S., Jakob, W., Marschner, S., Bala, K.: Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph. 30(4), 44:1–44:10 (2011)CrossRefGoogle Scholar
  44. 44.
    Zhao, S., Jakob, W., Marschner, S., Bala, K.: Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31(4), 75:1–75:10 (2012)CrossRefGoogle Scholar
  45. 45.
    Zhao, S., Luan, F., Bala, K.: Fitting procedural yarn models for realistic cloth rendering. ACM Trans. Graph. 35(4), 51:1–51:11 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Hokkaido UniversitySapporoJapan
  2. 2.Wakayama UniversityWakayamaJapan
  3. 3.Shizuoka UniversityHamamatsuJapan
  4. 4.Shibaura Institute of TechnologyTokyoJapan
  5. 5.Chuo Gakuin UniversityAbikoJapan

Personalised recommendations