Style-based motion analysis for dance composition


Synthesizing human motions from existing motion capture data is the approach of choice in most applications requiring high- quality visual results. Usually to synthesize motion, short motion segments are concatenated into longer sequences by finding transitions at points where character poses are similar. If similarity is only a measure of posture correlation, without consideration for the stylistic variations of movement, the resulting motion might have unnatural discontinuities. Particularly prone to this problem are highly stylized motions, such as dance performances. This work presents a motion analysis framework, based on Laban Movement Analysis, that also accounts for stylistic variations of the movement. Implemented in the context of Motion Graphs, it is used to eliminate potentially problematic transitions and synthesize style-coherent animation, without requiring prior labeling of the data. The effectiveness of our method is demonstrated by synthesizing contemporary dance performances that include a variety of different emotional states. The algorithm is able to compose highly stylized motions that are reminiscent to dancing scenarios using only plausible movements from existing clips.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    The volume features (\(f^{19}{-}f^{23}\)), apart from describing the LMA Shape component, as given in [3], could also give intimations of the Space component, as they additionally reveal the character’s kinesphere.

  2. 2.

    previous Motion Graph implementations have suggested using a shorter window, however we set it at 35 to make it comparable to the LMA window.


  1. 1.

    Alexiadis, D.S., Daras, P.: Quaternionic signal processing techniques for automatic evaluation of dance performances from mocap data. IEEE Trans. Multimedia 99, 1–16 (2014)

    Google Scholar 

  2. 2.

    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Gr. 21(3), 483–490 (2002)

    Article  Google Scholar 

  3. 3.

    Aristidou, A., Charalambous, P., Chrysanthou, Y.: Emotion analysis and classification: understanding the performers emotions using the LMA entities. Comput. Gr. Forum 34(6), 262–276 (2015)

    Article  Google Scholar 

  4. 4.

    Aristidou, A., Stavrakis, E., Charalambous, P., Chrysanthou, Y., Himona, S.L.: Folk dance evaluation using laban movement analysis. ACM J. Comput. Cult. Herit. 8(4), 20:1–20:19 (2015)

    Google Scholar 

  5. 5.

    Aristidou, A., Zeng, Q., Stavrakis, E., Yin, K., Cohen-or, D., Chrysanthou, Y., Chen, B.: Emotion control of unstructured dance movements. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’17. Eurographics Association, Aire-la-Ville, Switzerland (2017)

  6. 6.

    Brand, M., Hertzmann, A.: Style machines. In: Proceedings of SIGGRAPH ’00, pp. 183–192. ACM Press/Addison-Wesley Publishing Co., New York (2000)

  7. 7.

    Calvert, T., Wilke, W., Ryman, R., Fox, I.: Applications of computers to dance. IEEE Comput. Gr. Appl. 25(2), 6–12 (2005)

    Article  Google Scholar 

  8. 8.

    Chan, J., Leung, H., Tang, J., Komura, T.: A virtual reality dance training system using motion capture technology. IEEE Trans. Learn. Technol. 4(2), 187–195 (2011)

    Article  Google Scholar 

  9. 9.

    Chao, M.W., Lin, C.H., Assa, J., Lee, T.Y.: Human motion retrieval from hand-drawn sketch. IEEE Trans. Visual. Comput. Gr. 18(5), 729–740 (2012)

    Article  Google Scholar 

  10. 10.

    Chi, D., Costa, M., Zhao, L., Badler, N.: The emote model for effort and shape. In: Proceedings of SIGGRAPH ’00, pp. 173–182. ACM, New York (2000)

  11. 11.

    Durupinar, F., Kapadia, M., Deutsch, S., Neff, M., Badler, N.I.: PERFORM: perceptual approach for adding OCEAN personality to human motion using laban movement analysis. ACM Trans. Gr. 36(1), 6:1–6:16 (2016)

    Article  Google Scholar 

  12. 12.

    Hartmann, B., Mancini, M., Pelachaud, C.: Formational parameters and adaptive prototype instantiation for mpeg-4 compliant gesture synthesis. In: Proceedings of the Computer Animation, CA ’02, pp. 111–120. IEEE Computer Society, Washington, DC, USA (2002)

  13. 13.

    Hartmann, B., Mancini, M., Pelachaud, C.: Implementing expressive gesture synthesis for embodied conversational agents. In: Proceedings of GW ’05, pp. 188–199. Springer, Berlin (2006)

    Google Scholar 

  14. 14.

    Hartmann, S., Trunz, E., Krüger, B., Klein, R., Hullin, M.B.: Efficient multi-constrained optimization for example-based synthesis. Vis. Comput./Proc. Comput. Gr. Int. (CGI 2015) 31(6–8), 893–904 (2015)

    Google Scholar 

  15. 15.

    Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Gr. 35(4), 138:1–138:11 (2016)

    Article  Google Scholar 

  16. 16.

    Hsu, E., Pulli, K., Popović, J.: Style translation for human motion. ACM Trans. Gr. 24(3), 1082–1089 (2005)

    Article  Google Scholar 

  17. 17.

    Kapadia, M., Chiang, I.k., Thomas, T., Badler, N.I., Kider Jr., J.T.: Efficient motion retrieval in large motion databases. In: Proceedings of I3D ’13, pp. 19–28. ACM, New York (2013)

  18. 18.

    Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Gr. 23(3), 559–568 (2004)

    Article  Google Scholar 

  19. 19.

    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Gr. 21(3), 473–482 (2002)

    Article  Google Scholar 

  20. 20.

    Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proceedings of SCA ’10, pp. 1–10 (2010)

  21. 21.

    Laban, R., Ullmann, L.: The Mastery of Movement, 4th edn. Dance Books Ltd, Binsted (2011)

    Google Scholar 

  22. 22.

    Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Gr. 21(3), 491–500 (2002)

    Google Scholar 

  23. 23.

    Li, Y., Wang, T., Shum, H.Y.: Motion texture: a two-level statistical model for character motion synthesis. ACM Trans. Gr. 21(3), 465–472 (2002)

    Article  Google Scholar 

  24. 24.

    Luo, P., Neff, M.: A perceptual study of the relationship between posture and gesture for virtual characters. In: Motion in Games, pp. 254–265 (2012)

    Google Scholar 

  25. 25.

    Min, J., Chai, J.: Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans. Gr. 31(6), 153:1–153:12 (2012)

    Article  Google Scholar 

  26. 26.

    Min, J., Liu, H., Chai, J.: Synthesis and editing of personalized stylistic human motion. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pp. 39–46. ACM, NY (2010)

  27. 27.

    Müller, M., Röder, T.: Motion templates for automatic classification and retrieval of motion capture data. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’06, 137–146 (2006)

  28. 28.

    Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans. Gr. 24(3), 677–685 (2005)

    Article  Google Scholar 

  29. 29.

    Nakata, T., Mori, T., Sato, T.: Analysis of impression of robot bodily expression. J. Robot. Mechatron. 14(1), 27–36 (2002)

    Article  Google Scholar 

  30. 30.

    Okajima, S., Wakayama, Y., Okada, Y.: Human motion retrieval system based on LMA features using IEC method. In: Innovations in Intelligent Machines, pp. 117–130 (2012)

  31. 31.

    Oliveira, J.L., Naveda, L.A., Gouyon, F., Leman, M., Reis, L.P.: Synthesis of variable dancing styles based on a compact spatiotemporal representation of dance. In: Proceedings of IROS ’10 (2010)

  32. 32.

    Pearson, K.: Notes on the history of correlation. Biometrika 13(1), 25–45 (1920)

    Article  Google Scholar 

  33. 33.

    Pejsa, T., Pandzic, I.S.: State of the art in example-based motion synthesis for virtual characters in interactive applications. Comput. Gr. Forum 29(1), 202–226 (2010)

    Article  Google Scholar 

  34. 34.

    Ren, L., Patrick, A., Efros, A.A., Hodgins, J.K., Rehg, J.M.: A data-driven approach to quantifying natural human motion. ACM Trans. Gr. 24(3), 1090–1097 (2005)

    Article  Google Scholar 

  35. 35.

    Russell, J.A.: A circumplex model of affect. J. Personal. Soc. Psychol. 39, 1161–1178 (1980)

    Article  Google Scholar 

  36. 36.

    Senecal, S., Cuel, L., Aristidou, A., Magnenat-Thalman, N.: Continuous body emotion recognition system during theater performances. Comput. Anim. Virtual Worlds 27(3–4), 311–320 (2016)

    Article  Google Scholar 

  37. 37.

    Shapiro, A., Cao, Y., Faloutsos, P.: Style components. In: Proceedings of Graphics Interface, GI ’06, pp. 33–39. Canadian Information Processing Society, Toronto, Canada (2006)

  38. 38.

    Shiratori, T., Nakazawa, A., Ikeuchi, K.: Dancing-to-music character animation. Comput. Gr. Forum 25(3), 449–458 (2006)

    Article  Google Scholar 

  39. 39.

    Tang, J.K.T., Chan, J.C.P., Leung, H.: Interactive dancing game with real-time recognition of continuous dance moves from 3d human motion capture. In: Proceedings of ICUIMC ’11, pp. 50:1–50:9. ACM, New York (2011)

  40. 40.

    Torresani, L., Hackney, P., Bregler, C.: Learning motion style synthesis from perceptual observations. In: Proceedings of NIPS’06, pp. 1393–1400 (2006)

  41. 41.

    Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-based motion synthesis. Comput. Gr. Forum 23(4), 799–812 (2004)

    Article  Google Scholar 

  42. 42.

    Vasilescu, M.A.O.: Human motion signatures: analysis, synthesis, recognition. In: Proceedings of the International Conference on Pattern Recognition, ICPR ’02, pp. 456–460. IEEE, Washington, DC (2002)

  43. 43.

    Wakayama, Y., Okajima, S., Takano, S., Okada, Y.: IEC-based motion retrieval system using laban movement analysis. In: Proceedings of KES’10, pp. 251–260 (2010)

    Google Scholar 

  44. 44.

    Wilke, L., Calvert, T., Ryman, R., Fox, I.: From dance notation to human animation: the labandancer project: motion capture and retrieval. Comput. Anim. Virtual Worlds 16(3–4), 201–211 (2005)

    Article  Google Scholar 

  45. 45.

    Xia, S., Wang, C., Chai, J., Hodgins, J.: Realtime style transfer for unlabeled heterogeneous human motion. ACM Trans. Gr. 34(4), 119:1–119:10 (2015)

    Article  Google Scholar 

  46. 46.

    Yang, Y., Leung, H., Yue, L., Deng, L.: Generating a two-phase lesson for guiding beginners to learn basic dance movements. Comput. Educ. 61, 1–20 (2013)

    Article  Google Scholar 

  47. 47.

    Yumer, M.E., Mitra, N.J.: Spectral style transfer for human motion between independent actions. ACM Trans. Graph. 35(4), 137 (2016)

    Article  Google Scholar 

  48. 48.

    Zhao, L., Badler, N.I.: Acquiring and validating motion qualities from live limb gestures. Gr. Models 67(1), 1–16 (2005)

    Article  Google Scholar 

Download references


This work is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation Under Contract DIDAKTOR/0311/73

Author information



Corresponding author

Correspondence to Andreas Aristidou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 16901 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aristidou, A., Stavrakis, E., Papaefthimiou, M. et al. Style-based motion analysis for dance composition. Vis Comput 34, 1725–1737 (2018).

Download citation


  • Laban Movement Analysis
  • Motion Graphs
  • Motion style
  • Motion synthesis