Advertisement

The Visual Computer

, Volume 34, Issue 5, pp 721–733 | Cite as

A novel unconditionally stable explicit integration method for finite element method

  • Mianlun Zheng
  • Zhiyong Yuan
  • Qianqian Tong
  • Guian Zhang
  • Weixu Zhu
Original Article
  • 195 Downloads

Abstract

Physics-based deformation simulation demands much time in integration process for solving motion equations. To ameliorate, in this paper we resort to structural mechanics and mathematical analysis to develop a novel unconditionally stable explicit integration method for both linear and nonlinear FEM. First we advocate an explicit integration formula with three adjustable parameters. Then we analyze the spectral radius of both linear and nonlinear dynamic transfer function’s amplification matrix to obtain limitations for these three parameters to meet unconditional stability conditions. Finally, we theoretically analyze the accuracy property of the proposed method so as to optimize the computational errors. The experimental results indicate that our method is unconditionally stable for both linear and nonlinear systems and its accuracy property is superior to both common and recent explicit and implicit methods. In addition, the proposed method can efficiently solve the problem of huge computation cost in integration procedure for FEM.

Keywords

Finite element method Implicit integration Explicit integration Unconditionally stable 

Notes

Acknowledgements

This work is supported by the Science and Technology Program of Wuhan, China, under Grant No. 2016010101010022; National Natural Science Foundation of China under Grant No. 61373107.

Supplementary material

371_2017_1410_MOESM1_ESM.mov (26.2 mb)
Supplementary material 1 (mov 26823 KB)

References

  1. 1.
    Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics-based animation. Point Based Graph. 30(6), 340–387 (2005)Google Scholar
  2. 2.
    Taylor, Z.A., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans. Med. Imaging 27(5), 650–663 (2008)CrossRefGoogle Scholar
  3. 3.
    Dick, C., Georgii, J., Westermann, R.: A real-time multigrid finite hexahedra method for elasticity simulation using cuda. Simul. Model. Pract. Theory 19(2), 801–816 (2011)CrossRefGoogle Scholar
  4. 4.
    Yang, C., Li, S., Lan, Y., Wang, L., Hao, A., Qin, H.: Coupling time-varying modal analysis and fem for real-time cutting simulation of objects with multi-material sub-domains. Comput. Aided Geom. Des. 43, 53–67 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barbic, J.: Real-time subspace integration for St. Venant–Kirchhoff deformable models. Acm Trans. Graph. 24(3), 982–990 (2005)CrossRefGoogle Scholar
  6. 6.
    Gui, Y., Wang, J.T., Jin, F., Chen, C., Zhou, M.X.: Development of a family of explicit algorithms for structural dynamics with unconditional stability. Nonlinear Dyn. 77(4), 1157–1170 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hirota, G., Fisher, S., State, A.: An improved finite-element contact model for anatomical simulations. Vis. Comput. 19(5), 291–309 (2003)CrossRefGoogle Scholar
  8. 8.
    Choi, M.G., Ko, H.S.: Modal warping. Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graph. 11(1), 91–101 (2005)CrossRefGoogle Scholar
  9. 9.
    Yang, Y., Xu, W., Guo, X., Zhou, K., Guo, B.: Boundary-aware multidomain subspace deformation. IEEE Trans. Vis. Comput. Graph. 19(10), 1633–1645 (2013)CrossRefGoogle Scholar
  10. 10.
    Krysl, P., Lall, S., Marsden, J.E.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Methods Eng. 51(4), 479–504 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Barbic, J.: Real-time reduced large-deformation models and distributed contact for computer graphics and haptics, Ph.D. thesis. Carnegie Mellon University, Pittsburgh (2007), AAI3279452Google Scholar
  12. 12.
    Yang, Y., Li D., Xu, W., Tian, Y., Zheng, C.: Expediting precomputation for reduced deformable simulation. ACM Trans. Graph. 34(6), 243:1–243:13 (2015)Google Scholar
  13. 13.
    Hauth, M., Etzmuss, O., Strasser, W.: Analysis of numerical methods for the simulation of deformable models. Vis. Comput. 19(7), 581–600 (2003)CrossRefGoogle Scholar
  14. 14.
    Hussein, B., Dan, N., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54(4), 283–296 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(1), 67–94 (1959)Google Scholar
  16. 16.
    Belytschko, T.: An overview of semidiscretization and time integration procedures. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, pp. 1–66. North-Holland Publ., North-Holland, Amsterdam (1983)Google Scholar
  17. 17.
    Wilson, E.L.: A computer program for the dynamic stress analysis of underground structures, SEL. In: Technical Report 68-1, University of California, Berkeley (1968)Google Scholar
  18. 18.
    Bathe, K., Wilson E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, Englewood Cilffs, New Jersey (1976)Google Scholar
  19. 19.
    Miller, K., Joldes, G., Lance, D., Wittek, A.: Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23(2), 121–134 (2007). (Gui2014Development) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kang, Y.M., Choi, J.H., Cho, H.G., Lee, D.H.: An efficient animation of wrinkled cloth with approximate implicit integration. Vis. Comput. 17(3), 147–157 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Oh, S., Ahn, J., Wohn, K.: Low damped cloth simulation. Vis. Comput. 22(2), 70–79 (2006)CrossRefGoogle Scholar
  22. 22.
    Chang, S.Y.: Explicit pseudodynamic algorithm with unconditional stability. Am. Soc. Civ. Eng. 128(9), 935–947 (2002)Google Scholar
  23. 23.
    Chang, S.Y.: An explicit method with improved stability property. Int. J. Numer. Methods Eng. 77(8), 1100–1120 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Chang, S.Y., Yang, Y.S., Chi, W.: A family of explicit algorithms for general pseudodynamic testing. Earthq. Eng. Eng. Vib. 10(1), 51–64 (2011)CrossRefGoogle Scholar
  25. 25.
    Ding, Z., Li, L., Hu, Y., Li, X., Deng, W.: State-space based time integration method for structural systems involving multiple nonviscous damping models. Comput. Struct. 171, 31–45 (2016)CrossRefGoogle Scholar
  26. 26.
    Chang, S.Y.: Improved explicit method for structural dynamics. J. Eng. Mech. 133(7), 748–760 (2007)CrossRefGoogle Scholar
  27. 27.
    Chen, C., Ricles, J.M.: Development of direct integration algorithms for structural dynamics using discrete control theory. J. Eng. Mech. 134(8), 676–683 (2008)CrossRefGoogle Scholar
  28. 28.
    Bouaziz, S., Martin, S., Liu, T., Kavan, T., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4), 154:1–154:11 (2014)CrossRefGoogle Scholar
  29. 29.
    Wang, H.: A Chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. 34(6), 246:1–246:9 (2015)Google Scholar
  30. 30.
    Wang, H., Yang, Y.: Descent methods for elastic body simulation on the GPU. ACM Trans. Graph. 35(6), 212:1–212:10 (2016)Google Scholar
  31. 31.
    Liu, T., Bouaziz, S., Kavan, L.: Towards real-time simulation of hyperelastic materials. arXiv:1604.07378
  32. 32.
    Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and animation. Acm Siggraph Computer Graphics. 23(3), 207–214 (1989)CrossRefGoogle Scholar
  33. 33.
    Wriggers P.: Computational contact mechanics. Wiley (2002)Google Scholar
  34. 34.
    Hughes, T.R.J.: The finite element method. In: Linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cilffs, New Jersey (2000)Google Scholar
  35. 35.
    Rezaiee-Pajand, M., Sarafrazi, S.R., Hashemian, M.: Improving stability domains of the implicit higher order accuracy method. Int. J. Numer. Methods Eng. 88(9), 880–896 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Bathe, K.J., Wilson, E.L.: Stability and accuracy analysis of direct integration methods. Earthq. Eng. Struct. Dyn. 1(3), 283–291 (1972)CrossRefGoogle Scholar
  37. 37.
    Tamma, K.K., Zhou, X., Sha, D.: A theory of development and design of generalized integration operators for computational structural dynamics. Int. J. Numer. Methods Eng. 50(7), 1619–1664 (2001)CrossRefMATHGoogle Scholar
  38. 38.
    Tamma, K.K., Sha, D., Zhou, X.: Time discretized operators. part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192(3), 291–329 (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of ComputerWuhan UniversityWuhanChina

Personalised recommendations