The Visual Computer

, Volume 34, Issue 5, pp 675–688 | Cite as

Single image dehazing using second-generation wavelet transforms and the mean vector L2-norm

  • Asem Khmag
  • S. A. R.  Al-Haddad
  • Abd Rahman Ramli
  • Bahareh Kalantar
Original Article
  • 125 Downloads

Abstract

Single image dehazing remains a seminal area of study in computer vision. Despite the huge number of studies that have addressed haze in a single image, the restoration images have not yet reached a satisfactory level in terms of visual appearance and time complexity burden. In this paper, a novel single image haze removal technique based on edge and fine texture preserving is introduced. To achieve better visual quality from the hazy image, the proposed technique uses mean vector L2-norm that is core of window sampling to estimate the transmission map. Then, second-generation wavelet transform filter is utilized in order to enhance the estimated transmission map of the resulted image. The usage of second-generation wavelet filter in this paper is due to its effectiveness while achieving fast speed. Experimental outcomes present that the proposed technique achieves competitive achievements in comparison with up-to-date state-of-the-art image dehazing methods in both quantitative and qualitative assessments, i.e., visual effects, universality, and computational processing speed.

Keywords

Scene segmentation Mean vector L2-norm Second-generation wavelet Image recovery 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments to improve the quality of this paper.

References

  1. 1.
    Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intel. 25(6), 713–724 (2003)CrossRefGoogle Scholar
  2. 2.
    Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: IEEE computer society conference on computer vision pattern recognition, vol. 1, pp. 323–325 (2001)Google Scholar
  3. 3.
    Shwartz, S., Namer, E., Schechner, Y.Y.: Blind haze separation. In: IEEE computer society conference on computer vision and pattern recognition, vol. 2, 1984–1991 (2006)Google Scholar
  4. 4.
    Wu, D., Dai, Q.: Data-driven visibility enhancement using multi-camera system. In: SPIE defense, security, and sensing. International society for optics photonics, Orlando, pp. 76890H–76890H (2010)Google Scholar
  5. 5.
    Schaul, L., Fredembach, C., Süsstrunk, S.: Color image dehazing using the near-infrared. In: IEEE international conference on image processing, pp. 1629–1632 (2009)Google Scholar
  6. 6.
    Wang, J.-B., Ning, He, Zhang, Lu-Lu, Ke, Lu: Single image dehazing with a physical model and dark channel prior. Neurocomputing 149, 718–728 (2015)CrossRefGoogle Scholar
  7. 7.
    Kopf, J., Neubedssdrt, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., Lischinski, D.: Deep photo: model-based photograph enhancement and viewing. ACM Trans. Graph. (TOG) 27(5), 116 (2008)CrossRefGoogle Scholar
  8. 8.
    Hautière, N., Tarel, J.-P., Aubert, D.: Towards fog-free in-vehicle vision systems through contrast restoration. In: IEEE conference on computer vision and pattern recognition, pp. 1–8 (2007)Google Scholar
  9. 9.
    Narasimhan, S.G., Nayar, S.K.: Interactive (de) weathering of an image using physical models. IEEE workshop on color and photometric methods in computer vision, vol. 6(6), pp. 1–8 (2003)Google Scholar
  10. 10.
    Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 72 (2008)CrossRefGoogle Scholar
  11. 11.
    Qi, M., Hao, Q., Guan, Q., Kong, J., Zhang, Y.: Image dehazing based on structure preserving. Opt. Int. J. Light Electron Opt. 126(22), 3400–3406 (2015)CrossRefGoogle Scholar
  12. 12.
    Tan, R.T.: Visibility in bad weather from a single image. In: IEEE conference on computer vision and pattern recognition, pp. 1-8 (2008)Google Scholar
  13. 13.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: IEEE transactions on pattern analysis and machine intelligence, vol. 33(12), pp. 2341–2353 (2011)Google Scholar
  14. 14.
    Tarel, J.-P. and N. Hautiere. Fast visibility restoration from a single color or gray level image. In: IEEE international conference on computer vision, pp. 2201–2208 (2009)Google Scholar
  15. 15.
    Khmag, A., Abd Rahman, Ramli, Al Haddad, S.A.R., Hashim, S.J.: Additive noise reduction in natural images using second-generation wavelet transform hidden Markov models. IEEJ Trans. Electr. Electron. Eng. 11(3), 339–347 (2016)CrossRefGoogle Scholar
  16. 16.
    Kratz, L., Nishino, K.: Factorizing scene albedo and depth from a single foggy image. In: IEEE international conference on computer vision, pp. 1701–1708 (2009)Google Scholar
  17. 17.
    Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. 28(8), 713–721 (2012)CrossRefGoogle Scholar
  18. 18.
    Dong, X.-M., Hiwee, X-Y., Peng, S-L., Wanng, D-C.: Single color image dehazing using sparse priors. In: IEEE international conference on image processing, pp. 3593–3596 (2010)Google Scholar
  19. 19.
    Zhang, Y.-Q., Ding, Y., Xiao, J.-S., Liu, J., Guo, Z.: Visibility enhancement using an image filtering approach. EURASIP J. Adv. Signal Process. 1, 1–6 (2012)CrossRefGoogle Scholar
  20. 20.
    Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single image. In: Computer vision, pp. 501–504. Springer, Berlin (2010)Google Scholar
  21. 21.
    Kim, J.-H., Jang, W.-D., Sim, J.-Y., Kim, C.-S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. In: IEEE transactions on image processing, vol. 24(11), pp. 3522–3533 (2015)Google Scholar
  23. 23.
    Li, B., Wang, S., Zheng, J., Zheng, L.: Single image haze removal using content-adaptive dark channel and post enhancement. Comput. Vis. 8(2), 131–140 (2014)CrossRefGoogle Scholar
  24. 24.
    Cozman, F., Krotkov, E.: Depth from scattering. In: IEEE computer society conference on computer vision and pattern recognition, pp. 801–808 (1997)Google Scholar
  25. 25.
    Yoon, I., Kim, S., Kim, D., Hayes, M., Paik, J.: Adaptive defogging with color correction in the HSV color space for consumer surveillance system. In: IEEE transactions on consumer electronics, vol. 58(1), pp. 111–116 (2012)Google Scholar
  26. 26.
    Gibson, K.B., Nguyen, T.Q.: An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J. Image Video Process. 1, 1–14 (2013)Google Scholar
  27. 27.
    Berman, D., & Avidan, S.: Non-local image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1674–1682 (2016)Google Scholar
  28. 28.
    Gibson, K.B., Vo, D.T., Nguyen, T.Q.: An investigation of dehazing effects on image and video coding. In: IEEE transactions on image processing, vol. 21(2), pp. 662–673 (2012)Google Scholar
  29. 29.
    Xu, Y., Weaver, J., Healy, J.D., Lu, J.: Wavelet transform domain filters: a spatially selective noise filtration technique. In: IEEE transactions on image processing, vol.3(6), pp. 747–758 (1994)Google Scholar
  30. 30.
    Gibson, K.B., Nguyen, T.Q.: Hazy image modeling using color ellipsoids. In: IEEE international conference on image processing, pp. 1861–1864 (2011)Google Scholar
  31. 31.
    Khmag, A., Abd Rahman, Ramli, Al Haddad, S.A.R., Hashim, S.J.: Denoising of natural image based on non-linear threshold filtering using discrete wavelet transformation. Int. Rev. Comput. Softw. (IRECOS) 9(8), 1348–1357 (2014)CrossRefGoogle Scholar
  32. 32.
    Klinker, G.J., Shafer, S.A., Kanade, T.: A physical approach to color image understanding. Int. J. Comput. Vis. 4(1), 7–38 (1990)CrossRefGoogle Scholar
  33. 33.
    Omer, I., Werman, M.: Color lines: image specific color representation. In: IEEE computer society conference on computer vision and pattern recognition, vol. 2, pp. 946–953 (2004)Google Scholar
  34. 34.
    Choi, L.K., You, J., Bovik, A.C.: Referenceless perceptual image defogging. In: IEEE Southwest symposium on image analysis and interpretation, pp. 165–168 (2014)Google Scholar
  35. 35.
    Ding, M., Wei, L.: Single-image haze removal using the mean vector L2-norm of RGB image sample window. Opt. Int. J. Light Electron Opt. 126(23), 3522–3528 (2015)CrossRefGoogle Scholar
  36. 36.
    Shi, Z., Long, J., Tang, W., Zhang, C.: Single image dehazing in inhomogeneous atmosphere. Opt. Int. J. Light Electron Opt. 125(15), 3868–3875 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of ZawiaZawiyaLibya
  2. 2.Faculty of EngineeringUniversiti Putra Malaysia (UPM)SelangorMalaysia

Personalised recommendations