Skip to main content
Log in

Adaptive sparse polynomial regression for camera lens simulation

The Visual Computer Aims and scope Submit manuscript

Abstract

Lens effects are crucial visual elements in the synthetic imagery, but rendering lens effects with complex full lens models is time-consuming. This paper proposes a polynomial regression-based approach for constructing a sparse and accurate polynomial lens model. Terms of a polynomial are built adaptively in a bottom-up approach. Depending on the distribution of aberrations, this approach partitions the light field and builds separate polynomial models for local light fields. A line pupil-based sampling method is presented to accelerate the generation of camera rays. In addition, a new Monte Carlo estimator is derived to support general Monte Carlo rendering. Experiments show that this approach significantly reduces the time cost of constructing a polynomial lens model in comparison to state-of-the-art methods, while achieving high imaging accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hullin, M.B., Hanika, J., Heidrich, W.: Polynomial optics: a construction kit for efficient ray-tracing of lens systems. Comput. Graph. Forum 31(4), 1375–1383 (2012)

    Article  Google Scholar 

  2. Hanika, J., Dachsbacher, C.: Efficient Monte Carlo rendering with realistic lenses. Comput. Graph. Forum 33(2), 323–332 (2014)

    Article  Google Scholar 

  3. Schrade, E., Hanika, J., Dachsbacher, C.: Sparse high-degree polynomials for wide-angle lenses. Comput. Graph. Forum 35(4), 89–97 (2016)

    Article  Google Scholar 

  4. Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation. ACM SIGGRAPH Comput. Graph. 15(3), 297–305 (1981)

    Article  Google Scholar 

  5. Kolb, C., Mitchell, D., Hanrahan, P.: A realistic camera model for computer graphics. In: Proceedings of SIGGRAPH ’95. SIGGRAPH ’95. ACM, New York, pp. 317–324 (1995)

  6. Gauss, C.F.: Dioptrische untersuchungen. Dioptrische Untersuchungen, by Gauss, Carl Friedrich 1 (1841)

  7. Heidrich, W., Slusallek, P., Seidel, H.P.: An image-based model for realistic lens systems in interactive computer graphics. Graphics Interface ’97, pp 68–75 (1997)

  8. Lee, S., Eisemann, E., Seidel, H.P.: Real-time lens blur effects and focus control. ACM Trans. Graph 29(4), 65:1–65:7 (2010)

    Google Scholar 

  9. Hullin, M., Eisemann, E., Seidel, H.P., Lee, S.: Physically-based real-time lens flare rendering. ACM Trans. Graph 30(4), 108:1–108:10 (2011)

    Article  Google Scholar 

  10. Steinert, B., Dammertz, H., Hanika, J., Lensch, H.P.: General spectral camera lens simulation. Comput. Graph. Forum 30(6), 1643–1654 (2011)

    Article  Google Scholar 

  11. Wu, J., Zheng, C., Hu, X., Xu, F.: Rendering realistic spectral bokeh due to lens stops and aberrations. Vis. Comput. 29(1), 41–52 (2013)

    Article  Google Scholar 

  12. Zheng, N., Hagen, N., Brady, D.J.: Analytic-domain lens design with proximate ray tracing. JOSA A 27(8), 1791–1802 (2010)

    Article  Google Scholar 

  13. Hopkins, G.W.: Proximate ray tracing and optical aberration coefficients. JOSA 66(5), 405–410 (1976)

    Article  Google Scholar 

  14. Lee, S., Eisemann, E.: Practical real-time lens-flare rendering. Comput. Graph. Forum 32(4), 1–6 (2013)

    Article  Google Scholar 

  15. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  17. Todorovski, L., Ljubič, P., Džeroski, S.: Inducing polynomial equations for regression. In: European Conference on Machine Learning. Springer, Berlin, pp. 441–452 (2004)

  18. Jekabsons, G., Lavendels, J.: Polynomial regression modelling using adaptive construction of basis functions. In: Proceedings of IADIS International Conference, Applied Computing, pp. 269–276 (2008)

  19. Smith, W.J.: Modern Lens Design, 2nd edn. McGraw-Hill New York, Maidenhead (2005)

    Google Scholar 

  20. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  21. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation, 3rd edn. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  22. Jakob, W., Marschner, S.: Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. 31(4), 58:1–58:13 (2012)

    Article  Google Scholar 

  23. Kelemen, C., Szirmay-Kalos, L., Antal, G., Csonka, F.: A simple and robust mutation strategy for the metropolis light transport algorithm. Comput. Graph. Forum 21(3), 531–540 (2002)

    Article  Google Scholar 

  24. Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: Proceedings of Third International Conference on Computational Graphics and Visualization Techniques (Compugraphics ’93), pp. 145–153 (1993)

  25. Hachisuka, T., Jensen, H.W.: Stochastic progressive photon mapping. ACM Trans. Graph. 28(5), 14:11–14:18 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the research grant (ref. 9140A21010115HT05003). The camera lens data are courtesy of Emanuel Schrade et al.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 567 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zheng, C. Adaptive sparse polynomial regression for camera lens simulation. Vis Comput 33, 715–724 (2017). https://doi.org/10.1007/s00371-017-1402-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1402-9

Keywords

Navigation