Adaptive multiple importance sampling for general functions

Abstract

We propose a mathematical expression for the optimal distribution of the number of samples in multiple importance sampling (MIS) and also give heuristics that work well in practice. The MIS balance heuristic is based on weighting several sampling techniques into a single estimator, and it is equal to Monte Carlo integration using a mixture of distributions. The MIS balance heuristic has been used since its invention almost exclusively with an equal number of samples from each technique. We introduce the sampling costs and adapt the formulae to work well with them. We also show the relationship between the MIS balance heuristic and the linear combination of these techniques, and that MIS balance heuristic minimum variance is always less or equal than the minimum variance of the independent techniques. Finally, we give one-dimensional and two-dimensional function examples, including an environment map illumination computation with occlusion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bekaert, P., Sbert, M., Halton, J.: Accelerating path tracing by re-using paths. In: Proceedings of EGRW ’02, pp. 125–134. Eurographics Association, Switzerland (2002)

  2. 2.

    Bullen, P.: Handbook of Means and Their Inequalities. Springer Science+Business Media, Dordrecht (2003)

    Google Scholar 

  3. 3.

    Cornuet, J.M., Marin, J.M., Mira, A., Robert, C.P.: Adaptive multiple importance sampling. Scand. J. Stat. 39(4), 798–812 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Csonka, F., Szirmay-Kalos, L., Antal, G.: Cost-driven multiple importance sampling for Monte-Carlo rendering. TR-186-2-01-19, Institute of Computer Graphics and Algorithms, Vienna University of Technology (2001)

  5. 5.

    Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Convergence of adaptive mixtures of importance sampling schemes. Ann. Stat. 35(1), 420–448 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Minimum variance importance sampling via population Monte Carlo. ESAIM Probab. Stat. 11, 427–447 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Elvira, V., Martino, L., Luengo, D., Corander, J.: A Gradient adaptive population importance sampler. In: Proceedings of ICASSP 2015, pp. 4075–4079. IEEE (2015)

  8. 8.

    Graybillk, F.A., Deal, R.: Combining unbiased estimators. Biometrics 15, 543–550 (1959)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Hachisuka, T., Kaplanyan, A.S., Dachsbacher, C.: Multiplexed metropolis light transport. ACM Trans. Graph. 33(4), 100:1–100:10 (2014)

    Article  Google Scholar 

  10. 10.

    Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  11. 11.

    Havran, V., Sbert, M.: Optimal combination of techniques in multiple importance sampling. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry. VRCAI ’14, pp. 141–150. ACM, New York (2014)

  12. 12.

    Kalos, M., Whitlock, P.: Monte Carlo Methods: Basics. Monte Carlo Methods. Wiley, New York (1986)

    Google Scholar 

  13. 13.

    Korovkin, P.P.: Inequalities. Little Mathematics Library. Mir Publishers, Moscow (1975)

    Google Scholar 

  14. 14.

    Lafortune, E.P., Willems, Y.D.: Using the Modified Phong Reflectance Model for Physically Based Rendering. TR CW197, Department of Computers, K.U. Leuven (1994)

  15. 15.

    Lai, Y.C., Chou, H.T., Chen, K.W., Fan, S.: Robust and efficient adaptive direct lighting estimation. Vis. Comput. 31(1), 83–91 (2014)

    Article  Google Scholar 

  16. 16.

    Lu, H., Pacanowski, R., Granier, X.: Second-order approximation for variance reduction in multiple importance sampling. Comput. Graph. Forum 32(7), 131–136 (2013)

    Article  Google Scholar 

  17. 17.

    Marin, J.M., Pudlo, P., Sedki, M.: Consistency of the adaptive multiple importance sampling. Preprint arXiv:1211.2548 (2012)

  18. 18.

    Owen, A., Zhou, Y.: Safe and effective importance sampling. J. Am. Stat. Assoc. 95, 135–143 (2000)

  19. 19.

    Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo Method. Wiley Series in Probability and Statistics. Wiley, New York (2008)

    Google Scholar 

  20. 20.

    Sbert, M., Havran, V., Szirmay-Kalos, L.: Variance analysis of multi-sample and one-sample multiple importance sampling. Comput. Graph. Forum 35(7), 451–460 (2016)

    Article  Google Scholar 

  21. 21.

    Tokuyoshi, Y., Ogaki, S., Sebastian, S.: Final Gathering Using Adaptive Multiple Importance Sampling. In: ACM SIGGRAPH ASIA 2010 Posters, SA ’10, pp. 47:1–47:1. ACM, New York, USA (2010)

  22. 22.

    Veach, E.: Robust Monte Carlo methods for light transport simulation. Ph.D. thesis, Stanford University (1997)

  23. 23.

    Veach, E., Guibas, L.J.: Optimally combining sampling techniques for Monte Carlo rendering. In: Proceedings of SIGGRAPH ’95, pp. 419–428. ACM, New York (1995)

Download references

Acknowledgements

This work has been partially funded by Czech Science Foundation research program GA14-19213S and by Grant TIN2016-75866-C3-3-R from the Spanish Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mateu Sbert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 238 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sbert, M., Havran, V. Adaptive multiple importance sampling for general functions. Vis Comput 33, 845–855 (2017). https://doi.org/10.1007/s00371-017-1398-1

Download citation

Keywords

  • Global illumination
  • Rendering equation analysis
  • Multiple importance sampling
  • Monte Carlo