Skip to main content
Log in

Cloth compression using local cylindrical coordinates

The Visual Computer Aims and scope Submit manuscript

Abstract

Dense triangular mesh is required to represent fine wrinkle details, which leads to heavy cost of storage and network transmission payload for cloth animation. This paper describes a simple and efficient compression method based on the nearly inextensible property of cloth, whose main degrees of freedom are the dihedral angles. Given a single frame as the reference, we build a local cylindrical coordinate system and encode the vertex as three channels: dihedral angle, change of radius and height w.r.t. the reference. The values of latter two channels are close to zero due to the inextensibility of cloth, which helps for a high compression ratio. Compared with previous approaches, our method can achieve a higher compression ratio with lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahn, J.K., Koh, Y.J., Kim, C.S.: Efficient fine-granular scalable coding of 3D mesh sequences. IEEE Trans. Multimedia 15(3), 485–497 (2013)

    Article  Google Scholar 

  2. Alexa, M., Mller, W.: Representing animations by principal components. Comput. Graph. Forum 19(3), 411–418 (2000)

    Article  Google Scholar 

  3. Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. Comput. Graph. Forum 20(3), 480–489 (2001)

    Article  Google Scholar 

  4. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM (1998)

  5. Bici, M.O., Akar, G.B.: Improved prediction methods for scalable predictive animated mesh compression. J. Vis. Commun. Image Represent. 22(7), 577–589 (2011)

    Article  Google Scholar 

  6. English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. ACM Trans. Graph. (TOG) 27(3), 1–5 (2008)

    Article  Google Scholar 

  7. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Trans. Graph. (TOG) 26(3), 49 (2007)

    Article  Google Scholar 

  8. Huang, J., Zhang, H., Shi, X., Liu, X., Bao, H.: Interactive mesh deformation with pseudo material effects. Comput. Animat. Virtual Worlds 17(3–4), 383–392 (2006)

    Article  Google Scholar 

  9. Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3d animations of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 126–135. Eurographics Association (2003)

  10. James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. (TOG) 24(3), 399–407 (2005)

    Article  Google Scholar 

  11. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’00, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)

  12. Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Comput. Graph. 28(1), 25–34 (2004)

    Article  Google Scholar 

  13. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’00, pp. 165–172. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)

  14. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. (TOG) 32(6), 214:1–214:7 (2013)

    Google Scholar 

  15. Mamou, K., Zaharia, T., Prêteux, F., Stefanoski, N., Ostermann, J.: Frame-based compression of animated meshes in MPEG-4. In: 2008 IEEE International Conference on Multimedia and Expo, pp. 1121–1124. IEEE (2008)

  16. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)

    Article  Google Scholar 

  17. Narain, R., Samii, A., O’Brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (TOG) 31(6), 152 (2012)

    Article  Google Scholar 

  18. Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Vis. Comput. Graph. 5(1), 47–61 (1999)

    Article  MathSciNet  Google Scholar 

  19. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217. ACM (2005)

  20. Shikhare, D., Bhakar, S., Mudur, S.P.: Compression of large 3d engineering models using automatic discovery of repeating geometric features. In: Proceedings of the Vision Modeling and Visualization Conference 2001 (VMV-01), Stuttgart, Germany, November 21–23, 2001, pp. 233–240 (2001)

  21. Stefanoski, N., Liu, X., Klie, P., Ostermann, J.: Scalable linear predictive coding of time-consistent 3D mesh sequences. In: 3DTV Conference, 2007, pp. 1–4. IEEE (2007)

  22. Stefanoski, N., Ostermann, J.: Connectivity-guided predictive compression of dynamic 3d meshes. In: 2006 IEEE International Conference on Image Processing, pp. 2973–2976. IEEE (2006)

  23. Stefanoski, N., Ostermann, J.: SPC: fast and efficient scalable predictive coding of animated meshes. In: Computer Graphics Forum, vol. 29, pp. 101–116. Wiley Online Library (2010)

  24. Thomaszewski, B., Pabst, S., Straer, W.: Continuum-based strain limiting. Comput. Graph. Forum 28(2), 569–576 (2009)

    Article  Google Scholar 

  25. Thomaszewski, B., Wacker, M., Stra\(\beta \)er, W., Lyard, E., Luible, C., Volino, P., Kasap, M., Muggeo, V., Magnenat-Thalmann, N.: Advanced topics in virtual garment simulation. In: Myszkowski, K., Havran, V. (eds.) Eurographics 2007—Tutorials. The Eurographics Association (2007)

  26. Touma, C., Gotsman, C.: Triangle mesh compression. In: Proceedings of the Graphics Interface 1998 Conference, June 18–20, 1998, Vancouver, BC, Canada, pp. 26–34 (1998)

  27. Wang, H.: A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. (TOG) 34(6), 246:1–246:9 (2015)

    Google Scholar 

  28. Wang, H., Hecht, F., Ramamoorthi, R., O’Brien, J.F.: Example-based wrinkle synthesis for clothing animation. ACM Trans. Graph. (TOG) 29(4), 107:1–107:8 (2010)

    Google Scholar 

  29. Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. (TOG) 30(4), 71 (2011)

    Google Scholar 

  30. Xu, W., Umentani, N., Chao, Q., Mao, J., Jin, X., Tong, X.: Sensitivity-optimized rigging for example-based real-time clothing synthesis. ACM Trans. Graph. (TOG) 33(4), 107:1–107:11 (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and suggestions. This work is partially supported by NSFC (Nos. 61522209, 61210007). Prof. Ying Song is supported by NSFC (No. 61602416) and Prof. Hanqiu Sun is supported by RGC research grant (Ref. 416212), UGC grant (No. 4055060), NSFC funds (Nos. 61379087, 61602183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zheng, Y., Song, Y. et al. Cloth compression using local cylindrical coordinates. Vis Comput 33, 801–810 (2017). https://doi.org/10.1007/s00371-017-1389-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1389-2

Keywords

Navigation