Skip to main content

Persistent homology to analyse 3D faces and assess body weight gain

Abstract

In this paper, we analyse patterns in face shape variation due to weight gain. We propose the use of persistent homology descriptors to get geometric and topological information about the configuration of anthropometric 3D face landmarks. In this way, evaluating face changes boils down to comparing the descriptors computed on 3D face scans taken at different times. By applying dimensionality reduction techniques to the dissimilarity matrix of descriptors, we get a space in which each face is a point and face shape variations are encoded as trajectories in that space. Our results show that persistent homology is able to identify features which are well related to overweight and may help assessing individual weight trends. The research was carried out in the context of the European project SEMEOTICONS, which developed a multisensory platform which detects and monitors over time facial signs of cardio-metabolic risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Andreu-Cabedo, Y., Henriquez, P., Colantonio, S., Coppini, G., Favilla, R., Germanese, D., Giannakakis, G., Giorgi, D., Larsson, M., Marraccini, P., Martinelli, M., Matuszewski, B., Milanic, M., Pascali, M., Pediaditis, M., Raccichini, G., Randeberg, L., Salvetti, O., Stromberg, T.: Mirror mirror on the wall...; an intelligent multisensory mirror for well-being self-assessment. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2015). doi:10.1109/ICME.2015.7177468

  2. 2.

    Beretti, S.: Ben Amor, B., Daoudi, M., del Bimbo, A.: 3d facial expression recognition using sift descriptors of automatically detected keypoints. Vis. Comput. J. 27(11), 1021–1036 (2011)

    Google Scholar 

  3. 3.

    Biasotti, S., Cerri, A., Giorgi, D., Spagnuolo, M.: Phog: photometric and geometric functions for textured shape retrieval. Comput. Graph. Forum 32(5), 13–22 (2013). doi:10.1111/cgf.12168

    Article  Google Scholar 

  4. 4.

    Biasotti, S., Falcidieno, B., Giorgi, D., Spagnuolo, M.: Mathematical tools for shape analysis and description. Synth. Lect. Comput. Graph. Animat. 6(2), 1–138 (2014)

    Article  Google Scholar 

  5. 5.

    Bookstein, F.L.: Biometrics, biomathematics and the morphometric synthesis. Bull. Math. Biol. 58(2), 313–365 (1996)

    Article  MATH  Google Scholar 

  6. 6.

    Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. 7.

    Celikutan, O., Ulukaya, S., Sankur, B.: A comparative study of face landmarking techniques. EURASIP J. Image Video Process. 2013(1), 13 (2013)

    Article  Google Scholar 

  8. 8.

    Coetzee, V., Chen, J., Perrett, D.I., Stephen, I.D.: Deciphering faces: quantifiable visual cues to weight. Perception 39(1), 51–61 (2010)

    Article  Google Scholar 

  9. 9.

    Collyer, M.L., Adams, D.C.: Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24(1), 75–83 (2013)

    Google Scholar 

  10. 10.

    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models: their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  11. 11.

    Coppini, G., Favilla, R., Gastaldelli, M., Colantonio, S., Marraccini, P.: Moving medical semeiotics to the digitalrealm. Semeoticons approach to face signs of cardiometabolic risk. In: HEALTHINF 2014 (2014)

  12. 12.

    Cormen, T.H., Leiserson, C.E., L.Rivest, R.: Introduction to Algorithms. The MIT Press, Cambridge (1994)

    Google Scholar 

  13. 13.

    Corti, M.: Geometric morphometrics: an extension of the revolution. Trends Ecol. Evol. 8(8), 302–303 (1993). doi:10.1016/0169-5347(93)90261-M. http://www.sciencedirect.com/science/article/pii/016953479390261M

  14. 14.

    d’Amico, M., Frosini, P., Landi, C.: Using matching distance in size theory: a survey. Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006)

    Article  Google Scholar 

  15. 15.

    Dibeklioglu, H., Salah, A., Akarun, L.: 3d facial landmarking under expression, pose, and occlusion variations. In: 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, pp. 1–6 (2008)

  16. 16.

    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis, vol. 4. Wiley, Chichester (1998)

    MATH  Google Scholar 

  17. 17.

    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Fanelli, G., Weise, T., Gall, J., Van Gool, L.: Real time head pose estimation from consumer depth cameras. In: Annual Symposium of the German Association for Pattern Recognition, vol. 6835, pp. 101–110 (2011)

  19. 19.

    Ferrario, V.F., Dellavia, C., Tartaglia, G.M., Turci, M., Sforza, C.: Soft tissue facial morphology in obese adolescents: a three-dimensional noninvasive assessment. Angle orthod. 74(1), 37–42 (2004)

    Google Scholar 

  20. 20.

    Gamble, J., Heo, G.: Exploring uses of persistent homology for statistical analysis of landmark-based shape data. J. Multivar. Anal. 101(9), 2184–2199 (2010). doi:10.1016/j.jmva.2010.04.016

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Giachetti, A., Lovato, C., Piscitelli, F., Milanese, C., Zancanaro, C.: Robust automatic measurement of 3d scanned models for human body fat estimation. IEEE J. Biomed. Health Inform. 19(2), 660–667 (2015)

    Article  Google Scholar 

  22. 22.

    Gower, J.: Principal coordinates analysis. In: Armitage, P., Coulton, T. (eds.) Encyclopedia of Biostatistics, vol. 5, pp. 3514–3518. Wiley, New York (1998)

  23. 23.

    Heo, G., Gamble, J., Kim, P.T.: Topological analysis of variance and the maxillary complex. J. Am. Stat. Assoc. 107(498), 477–492 (2012). doi:10.1080/01621459.2011.641430

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Global health observatory data. http://www.who.int/gho/ncd/risk_factors/overweight/en/

  25. 25.

    http://www.semeoticons.eu/

  26. 26.

    Jahanbin, S., Choi, H., Bovik, A.: Passive multimodal 2-d+3-d face recognition using gabor features and landmark distances. In: IEEE Transactions on Information Forensics and Security, pp. 1287–1304 (2011)

  27. 27.

    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Eurographics symposium on geometry processing, pp. 61–70. Aire-la-Ville, Switzerland (2006)

  28. 28.

    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Symposium on Geometry Processing, vol. 6 (2003)

  29. 29.

    Kendall, D.: Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel riemannian framework for shape analysis of 3d objects. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 1625–1632 (2010)

  31. 31.

    Kurtek, S., Klassen, E., Gore, J.C., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parameterized surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1717–1730 (2012)

    Article  Google Scholar 

  32. 32.

    Lee, B., Kim, J.Y.: Predicting visceral obesity based on facial characteristics. BMC Complement. Altern. Med. 14(1), 248 (2014)

    Article  Google Scholar 

  33. 33.

    Lee, B.J., Kim, J.Y.: Predicting visceral obesity based on facial characteristics. BMC Complement. Altern. Med. 14(1), 248 (2014)

    Article  Google Scholar 

  34. 34.

    Loucks, E., Schuman-Olivier, Z., Britton, W., Fresco, D., Desbordes, G., Brewer, J., Fulwiler, C. (2015) Mindfulness and cardiovascular disease risk: state of the evidence, plausible mechanisms, and theoretical framework. Cardiol. Rep. Curr. doi:10.1007/s11886-015-0668-7

  35. 35.

    Lu, X., Jain, A., Colbry, D.: Matching 2.5d face scans to 3d models. In: IEEE Transaction on Pattern Analysis and Machine Intelligence (2006)

  36. 36.

    Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011)

  37. 37.

    Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1), 419–441 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph.: TOG 21(4), 807–832 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Obesity and overweight: fact sheet n 311; 2015. http://www.who.int/mediacentre/factsheets/fs311/en/

  40. 40.

    Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3d face model for pose and illumination invariant face recognition. In: Proceedings of IEEE AVSS, Genova, Italy. IEEE (2009)

  41. 41.

    Quan, W., Matuszewski, B., Shark, L.K.: Improved 3-d facial representation through statistical shape model. In: IEEE International Conference on Image Processing, pp. 2433–2436 (2010)

  42. 42.

    Reyment, R.A.: An idiosyncratic history of early morphometrics. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. Slice, D.E. (eds.) Advances in Morphometrics, pp. 15–22. Springer, Boston, MA (1996)

  43. 43.

    Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  44. 44.

    Srivastava, A., Turaga, P., Kurtek, S.: On advances in differential-geometric approaches for 2d and 3d analyses and activity recognition. Image Vis. Comput. 30, 398–416 (2012)

    Article  Google Scholar 

  45. 45.

    Tausz, A., Vejdemo-Johansson, M., Adams, H.: Javaplex: A research software package for persistent (co)homology. Software available at http://code.google.com/javaplex (2011)

  46. 46.

    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  47. 47.

    Thompson, D’A.W.: On growth and form. Cambridge University Press, Cambridge (1942)

  48. 48.

    Tumpach, A., Drira, H., Daoudi, M., Srivastava, A.: Gauge invariant framework for shape analysis of surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 46–59 (2016)

    Article  Google Scholar 

  49. 49.

    Velardo, C., Dugelay, J.L.: Weight estimation from visual body appearance. In: BTAS 2010, 4th IEEE International Conference on Biometrics: Theory, Applications and Systems, September 27–29, 2010, Washington, DC, USA (2010)

  50. 50.

    Velardo, C., Dugelay, J.L.: What can computer vision tell you about your weight? In: Proceedings of 20th European Signal Procesing Conference (EUSIPCO 2012), Bucharest (Romania), August 27–31, 2012 (2012)

  51. 51.

    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45, 61–72 (2009)

    Article  Google Scholar 

  52. 52.

    Windheuser, T., Schlickewei, U., Schmidt, F., Cremers, D.: Geometrically consistent elastic matching of 3d shapes: a linear programming solution. In: International Conference on Computer Vision (ICCV) (2011)

  53. 53.

    Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  54. 54.

    Younes, L.: Space and manifolds of shapes in computer vision: an overview. Image Vis. Comput. 30, 389–397 (2012)

    Article  Google Scholar 

  55. 55.

    Zhang, Y., Matuszewski, B., Histace, A., Precioso, F.: Statistical model of shape moments with active contour evolution for shape detection and segmentation. J. Math. Imaging Vis. 47(1), 35–47 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2013–2016) under the grant agreement n. 611516 (SEMEOTICONS—SEMEiotic Oriented Technology for Individuals CardiOmetabolic risk self-assessmeNt and Self-monitoring).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Antonietta Pascali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giorgi, D., Pascali, M.A., Henriquez, P. et al. Persistent homology to analyse 3D faces and assess body weight gain. Vis Comput 33, 549–563 (2017). https://doi.org/10.1007/s00371-016-1344-7

Download citation

Keywords

  • Image processing
  • Feature measurement
  • Feature representation, size and shape