Advertisement

The Visual Computer

, Volume 34, Issue 2, pp 289–319 | Cite as

A survey on face modeling: building a bridge between face analysis and synthesis

  • Hanan SalamEmail author
  • Renaud Séguier
Survey

Abstract

Face modeling refers to modeling the shape and appearance of human faces which lays the basis for model-based facial analysis, synthesis and animation. This paper summarizes the existing state-of-the-art work on face modeling and animation in the Computer Graphics and the Computer Vision areas. While some models or techniques are exclusively used for facial analysis or for facial animation and synthesis, other models combine analysis and synthesis in an analysis-by-synthesis loop. This paper introduces a taxonomy of face modeling methods in function of the area of application (synthesis and analysis) and builds a link between the two by reviewing analysis-by-synthesis face modeling methods. The interest of such a taxonomy is to introduce new face models that combine ideas from the analysis and synthesis domains. We also provide an overview of the extensions of the seminal works presented in this paper. Within each category, we discuss the advantages and disadvantages of each method with respect to the others.

Keywords

Face modeling Face analysis Analysis-by-Synthesis Facial animation and synthesis 

References

  1. 1.
    C++ implementation of deva ramanan’s articulated pose estimation with flexible mixtures of parts”articulated pose estimation with flexible mixtures-of-parts. https://github.com/wg-perception/PartsBasedDetector
  2. 2.
    Eigenfaces implementation. https://github.com/agyorev/Eigenfaces
  3. 3.
    Abboud, B., Davoine, F.: Bilinear factorisation for facial expression analysis and synthesis. Vision, image and signal processing. IEE Proc. 152(3), 327–333 (2005)CrossRefGoogle Scholar
  4. 4.
    Ahlberg, J.: Candide-3–an updated parameterized face. Tech. rep., Report No. LiTH-ISY, Dept. of Electrical Engineering. Linkoping University, Sweden (2001)Google Scholar
  5. 5.
    Ahlberg, J.: An active model for facial feature tracking. EURASIP J. Appl. Signal Process. 2002(1), 566–571 (2002)Google Scholar
  6. 6.
    Aldrian, O., Smith, W.A.: Inverse rendering of faces with a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1080–1093 (2013)CrossRefGoogle Scholar
  7. 7.
    Ayala-Raggi, S., Altamirano-Robles, L., Cruz-Enriquez, J.: Automatic face interpretation using fast 3D illumination-based AAM models. Comput. Vis. Image Underst. 115(2), 194–210 (2011)CrossRefGoogle Scholar
  8. 8.
    Bacivarov, I.: Advances in the modelling of facial sub-regions and facial expressions using active appearance techniques. Ph.D. thesis, National University of Ireland, College of Engineering and Informatics (2009)Google Scholar
  9. 9.
    Bagherian, E., Rahmat, R.W.O.: Facial feature extraction for face recognition: a review. In: 2008 IEEE International Symposium on Information Technology, vol. 2, pp. 1–9 (2008)Google Scholar
  10. 10.
    Bailly, K.: Méthodes d’apprentissage pour l’estimation de la pose de la tête dans des images monoculaires. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI (2010)Google Scholar
  11. 11.
    Baizhen, Z., Qiuqi, R.: Facial feature extraction using improved deformable templates. In: IEEE 8th International Conference on Signal processing, vol. 4 (2006)Google Scholar
  12. 12.
    Baltrušaitis, T., Robinson, P., Morency, L.P.: 3D constrained local model for rigid and non-rigid facial tracking. In: IEEE Conference on Computer vision and pattern recognition (CVPR), pp. 2610–2617 (2012)Google Scholar
  13. 13.
    Baran, I., Popovic, J.: Automatic rigging and animation of 3D characters. ACM Trans. on Graph. (TOG) 26(3), 72 (2007)CrossRefGoogle Scholar
  14. 14.
    Basso, C., Vetter, T., Blanz, V.: Regularized 3D morphable models. In: First IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, 2003. HLK 2003, pp. 3–10 (2003)Google Scholar
  15. 15.
    Batur, A., Hayes, M.: Adaptive active appearance models. IEEE Trans. Image Process. 14(11), 1707–1721 (2005)CrossRefGoogle Scholar
  16. 16.
    Blake, A., Curwen, R., Zisserman, A.: Affine-invariant contour tracking with automatic control of spatiotemporal scale. In: Proceedings. IEEE Fourth International Conference on Computer Vision, pp. 66–75 (1993)Google Scholar
  17. 17.
    Blake, A., Isard, M.: Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion, 1st edn. Springer, Secaucus (1998)CrossRefGoogle Scholar
  18. 18.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 187–194 (1999)Google Scholar
  19. 19.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Machine Intell. 25(9), 1063–1074 (2003)CrossRefGoogle Scholar
  20. 20.
    Canzler, U., Kraiss, K.: Person-adaptive facial feature analysis for an advanced wheelchair user-interface. Conf. Mechatron. Robot. 3, 871–876 (2004)Google Scholar
  21. 21.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Caunce, A., Taylor, C., Cootes, T.: Adding facial actions into 3d model search to analyse behaviour in an unconstrained environment. In: Advances in Visual Computing, pp. 132–142. Springer, Berlin (2010)Google Scholar
  23. 23.
    Caunce, A., Taylor, C., Cootes, T.: Using detailed independent 3D sub-models to improve facial feature localisation and pose estimation. In: Advances in Visual Computing, pp. 398–408. Springer, Berlin (2012)Google Scholar
  24. 24.
    Çeliktutan, O., Ulukaya, S., Sankur, B.: A comparative study of face landmarking techniques. EURASIP J. Image Video Process. 2013(1), 13 (2013)CrossRefGoogle Scholar
  25. 25.
    Cesar, R., Bengoetxea, E., Bloch, I.: Inexact graph matching using stochastic optimization techniques for facial feature recognition. In: Pattern Recognition, 2002. Proceedings. IEEE 16th International Conference on, vol. 2, pp. 465–468 (2002)Google Scholar
  26. 26.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Cootes, T., Cooper, D., Taylor, C., Graham, J.: Trainable method of parametric shape description. Image and Vision Comput. 10(5), 289–294 (1992)CrossRefGoogle Scholar
  28. 28.
    Cootes, T., Edwards, G., Taylor, C.: Active appearance models. In: IEEE European Conference on Computer Vision (ECCV ’98), p. 484 (1998)Google Scholar
  29. 29.
    Cootes, T., Edwards, G., Taylor, C.: A comparative evaluation of active appearance model algorithms. Br. Mach. Vis. Conf. 2, 680–689 (1998)Google Scholar
  30. 30.
    Cootes, T., Taylor, C.: A mixture model for representing shape variation. Image Vis. Comput. 17(8), 567–573 (1999)CrossRefGoogle Scholar
  31. 31.
    Cootes, T., Taylor, C.: An algorithm for tuning an active appearance model to new data. In: Proc. British Machine Vision Conference, vol. 3, pp. 919–928. Citeseer (2006)Google Scholar
  32. 32.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. Computer Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  33. 33.
    Cordea, M., Petriu, E., Petriu, D.: Three-dimensional head tracking and facial expression recovery using an anthropometric muscle-based active appearance model. IEEE Trans. Instrum. Meas. 57(8), 1578–1588 (2008)CrossRefGoogle Scholar
  34. 34.
    Cristinacce, D., Cootes, T.: A comparison of shape constrained facial feature detectors. In: Proceedings, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 375–380 (2004)Google Scholar
  35. 35.
    Cristinacce, D., Cootes, T.: Facial feature detection and tracking with automatic template selection. In: Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on, pp. 429–434. IEEE (2006)Google Scholar
  36. 36.
    Cristinacce, D., Cootes, T.: Feature detection and tracking with constrained local models. Proc. Br. Mach. Vis. Conf. 3, 929–938 (2006)zbMATHGoogle Scholar
  37. 37.
    Cristinacce, D., Cootes, T.: Boosted regression active shape models. Proc. Br. Mach. Vis. Conf. 2, 880–889 (2007)Google Scholar
  38. 38.
    Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local models. Pattern Recognit. 41(10), 3054–3067 (2008)CrossRefzbMATHGoogle Scholar
  39. 39.
    Ding, C., Choi, J., Tao, D., Davis, L.S.: Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 518–531 (2016)CrossRefGoogle Scholar
  40. 40.
    Donner, R., Reiter, M., Langs, G., Peloschek, P., Bischof, H.: Fast active appearance model search using canonical correlation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1690–1694 (2006)CrossRefGoogle Scholar
  41. 41.
    Dornaika, F., Davoine, F.: Head and facial animation tracking using appearance-adaptive models and particle filters. In: Conference on Computer Vision and Pattern Recognition Workshop, 2004. CVPRW’04. pp. 153–153 (2004)Google Scholar
  42. 42.
    Dornaika, F., Davoine, F.: On appearance based face and facial action tracking. IEEE Trans. Circuits Syst. Video Technol. 16(9), 1107–1124 (2006)CrossRefGoogle Scholar
  43. 43.
    Ekman, P., Friesen, W.: Facial Action Coding System. Consulting Psychologists Press, Palo Alto (1977)Google Scholar
  44. 44.
    Eleftheriadis, A., Herpel, C., Rajan, G., Ward, L.: Mpeg-4 systems, text for iso/iec fcd 14496-1 systems. Tech. rep., MPEG-4 SNHC (1998)Google Scholar
  45. 45.
    Ersotelos, N., Dong, F.: Building highly realistic facial modeling and animation: a survey. Vis. Comput. 24(1), 13–30 (2008)CrossRefGoogle Scholar
  46. 46.
    Essa, I., Basu, S., Darrell, T., Pentland, A.: Modeling, tracking and interactive animation of faces and heads using input from video. In: Proceedings, IEEE Computer Animation’96, pp. 68–79 (1996)Google Scholar
  47. 47.
    Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)CrossRefGoogle Scholar
  48. 48.
    Feng, W., Kim, B., Yu, Y.: Real-time data driven deformation using kernel canonical correlation analysis. ACM Trans. Gr. (TOG) 27(3), 91 (2008)Google Scholar
  49. 49.
    Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Trans. Comput. 100(22) (1973)Google Scholar
  50. 50.
    Gao, X., Su, Y., Li, X., Tao, D.: Gabor texture in active appearance models. Neurocomputing 72(13), 3174–3181 (2009)CrossRefGoogle Scholar
  51. 51.
    Gao, X., Su, Y., Li, X., Tao, D.: A review of active appearance models. IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev. 40(2), 145–158 (2010)CrossRefGoogle Scholar
  52. 52.
    Gast, E., Lew, M.: A framework for real-time face and facial feature tracking using optical flow pre-estimation and template tracking. Master’s thesis, LIACS, Leiden University (2010)Google Scholar
  53. 53.
    Gibson, S.F., Mirtich, B.: A survey of deformable modeling in computer graphics. Tech. rep, Citeseer (1997)Google Scholar
  54. 54.
    Glasbey, C., Mardia, K.: A review of image-warping methods. J. Appl. Stat. 25(2), 155–171 (1998)CrossRefzbMATHGoogle Scholar
  55. 55.
    Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10(10), 1467–1475 (2001)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Gonzalez-Mora, J., De la Torre, F., Murthi, R., Guil, N., Zapata, E.: Bilinear active appearance models. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV, pp. 1–8 (2007)Google Scholar
  57. 57.
    Graciano, A., Cesar Jr., R., Bloch, I.: Inexact graph matching for facial feature segmentation and recognition in video sequences: results on face tracking. In: Progress in Pattern Recognition, Speech and Image Analysis, pp. 71–78. Springer, Berlin (2003)Google Scholar
  58. 58.
    Histace, A., Meziou, L., Matuszewski, B., Precioso, F., Murphy, M., Carreiras, F.: Statistical region based active contour using a fractional entropy descriptor: application to nuclei cell segmentation in confocal microscopy images. Ann. Br. Mach. Vis. Assoc. 2013(5), 1–15 (2013)Google Scholar
  59. 59.
    Hiwada, K., Maki, A., Nakashima, A.: Mimicking video: real-time morphable 3D model fitting. In: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 132–139. ACM (2003)Google Scholar
  60. 60.
    Hodge, A., Fenster, A., Downey, D., Ladak, H.: Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D. Comput. Methods Programs Biomed. 84(2–3), 99–113 (2006)CrossRefGoogle Scholar
  61. 61.
    Hou, Y., Fan, P., Ravyse, I., Enescu, V., Sahli, H.: Smooth adaptive fitting of 3D face model for the estimation of rigid and nonrigid facial motion in video sequences. Signal Process. Image Commun. 26(8), 550–566 (2011)CrossRefGoogle Scholar
  62. 62.
    Hrault, R.: Vision et apprentissage statistique pour la reconnaissance d’items. Ph.D. thesis, Universit de Technologie de Compigne (2007)Google Scholar
  63. 63.
    Hsu, R.: Face detection and modeling for recognition. Tech. rep, DTIC Document (2002)Google Scholar
  64. 64.
    Hu, G., Chan, C.H., Yan, F., Christmas, W., Kittler, J.: Robust face recognition by an albedo based 3D morphable model. In: IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8 (2014)Google Scholar
  65. 65.
    Huber, P.: 4D face: Real-time 3D face tracking and reconstruction from 2D video. https://github.com/patrikhuber/4dface
  66. 66.
    Huber, P.: eos: A lightweight header-only 3D morphable face model fitting library in modern c++11/14. https://github.com/patrikhuber/eos
  67. 67.
    Huber, P., Feng, Z.H., Christmas, W., Kittler, J., Rätsch, M.: Fitting 3D morphable models using local features. In: IEEE International Conference on Image Processing (ICIP), pp. 1195–1199 (2015)Google Scholar
  68. 68.
    Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, W., Christmas, W., Rätsch, M., Kittler, J.: A multi resolution 3D morphable face model and fitting framework. In: International Conference on Computer Vision Theory and Applications (VISAPP), pp. 1–8 (2016)Google Scholar
  69. 69.
    Image, University, V.C.G.B.: Active blobs implementation. http://www.cs.bu.edu/fac/sclaroff/ivc/ActiveBlobs/Home.html
  70. 70.
    Jolliffe, I.: Principal component analysis. Wiley, New York (2005)Google Scholar
  71. 71.
    Joshi, P., Tien, W., Desbrun, M., Pighin, F.: Learning controls for blend shape based realistic facial animation. In: ACM SIGGRAPH 2005 Courses, p. 8. ACM (2005)Google Scholar
  72. 72.
    Kahraman, F., Stegmann, M.: Towards illumination-invariant localization of faces using active appearance models. In: Signal Processing Symposium. NORSIG 2006. IEEE Proceedings of the 7th Nordic, pp. 102–105 (2006)Google Scholar
  73. 73.
    Kalra, P.: An interactive multimodal facial animation system. Ph.D. thesis, Ecole Polytechnique Fdrale de Lausanne, Switzerland (1993)Google Scholar
  74. 74.
    Kalra, P., Mangili, A., Thalmann, N., Thalmann, D.: Simulation of facial muscle actions based on rational free form deformations. Comput. Graph. Forum 11(3), 59–69 (1992)CrossRefGoogle Scholar
  75. 75.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  76. 76.
    Kazemi, V., Sullivan, J.: Face alignment with part-based modeling. In: Proceedings of the British Machine Vision Conference, pp. 27–1. BMVA Press (2011)Google Scholar
  77. 77.
    Kemelmacher-Shlizerman, I.: Internet based morphable model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3256–3263 (2013)Google Scholar
  78. 78.
    Kroon, D.J.: Cootes 2D/3D active shape and appearance model for automatic image object segmentation and recognition. http://www.mathworks.com/matlabcentral/fileexchange/
  79. 79.
    Kuo, P., Hillman, P., Hannah, J.: Improved facial feature extraction for model-based multimedia. In: Proceedings 2nd IEE European Conference on Visual Media Production, pp. 137–146. Citeseer (2005)Google Scholar
  80. 80.
    La Cascia, M., Isidoro, J., Sclaroff, S.: Head tracking via robust registration in texture map images. In: Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on, pp. 508–514 (1998)Google Scholar
  81. 81.
    Langs, G., Peloschek, P., Donner, R., Bischof, H.: A clique of active appearance models by minimum description length. In: British Machine Vision Conference (BMCV’05), pp. 859–868 (2005)Google Scholar
  82. 82.
    Leo, M.J., Manimegalai, D.: 3D modeling of human faces-a survey. In: IEEE 3rd International Conference on Trendz in Information Sciences and Computing (TISC), pp. 40–45 (2011)Google Scholar
  83. 83.
    Li, Y., Ito, W.: Shape parameter optimization for adaboosted active shape model. In: Tenth IEEE International Conference on Computer Vision. ICCV 2005, vol. 1, pp. 251–258 (2005)Google Scholar
  84. 84.
    Lima, W.: Face recognition using 3D structural geometry of rigid features extracted from 2D images. Master’s thesis, Universidade do Minho, Escola de Engenharia (2010)Google Scholar
  85. 85.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  86. 86.
    Magnenat-Thalmann, N., Thalmann, D.: Handbook of virtual humans. Wiley, New York (2005)Google Scholar
  87. 87.
    Malciu, M., Preteux, F.: Tracking facial features in video sequences using a deformable-model-based approach. In: International Symposium on Optical Science and Technology, pp. 51–62. International Society for Optics and Photonics (2000)Google Scholar
  88. 88.
    Marshall, D., Cosker, D., Rosin, P., Hicks, Y.: Speech and expression driven animation of a video-realistic appearance based hierarchical facial model. In: Workshop in conjunction with IEEE CVPR of Learning, Representation and Context for Human Sensing in Video. Citeseer (2006)Google Scholar
  89. 89.
    Martins, P., Caseiro, R., Batista, J.: Non-parametric bayesian constrained local models. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1797–1804 (2014)Google Scholar
  90. 90.
    Martins, P., Caseiro, R., Henriques, J.F., Batista, J.: Likelihood-enhanced bayesian constrained local models. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 303–307 (2014)Google Scholar
  91. 91.
    Martins, P., Henriques, J.F., Caseiro, R., Batista, J.: Bayesian constrained local models revisited. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 704–716 (2016)CrossRefGoogle Scholar
  92. 92.
    Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60(2), 135–164 (2004)CrossRefGoogle Scholar
  93. 93.
    Maurel, P., McGonigal, A., Keriven, R., Chauvel, P.: 3D model fitting for facial expression analysis under uncontrolled imaging conditions. In: 19th International Conference on Pattern Recognition. ICPR 2008, pp. 1–4 (2008)Google Scholar
  94. 94.
    Maurer, T., Von der Malsburg, C.: Tracking and learning graphs and pose on image sequences of faces. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, pp. 176–181 (1996)Google Scholar
  95. 95.
    Mayer, C., Radig, B.: Learning displacement experts from multi-band images for face model fitting. In: ACHI 2011, The Fourth International Conference on Advances in Computer-Human Interactions, pp. 106–111 (2011)Google Scholar
  96. 96.
    Menet, S., Saint-Marc, P., Medioni, G.: Active contour models: overview, implementation and applications. In: IEEE International Conference on Systems, Man and Cybernetics, 1990, Conference Proceedings, pp. 194–199 (1990)Google Scholar
  97. 97.
    Meyer, M., Anderson, J.: Key point subspace acceleration and soft caching. ACM Trans. Graph. (TOG) 26(3), 74 (2007)CrossRefGoogle Scholar
  98. 98.
    Microsoft: face tracking using kinect. https://msdn.microsoft.com/en-us/library/jj130970
  99. 99.
    Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Computer Vision–ECCV 2008, pp. 504–513. Springer, Berlin (2008)Google Scholar
  100. 100.
    Muré, M.: 3D morphable model software. https://github.com/MichaelMure/3DMM
  101. 101.
    Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Noh, J.Y., Neumann, U.: A survey of facial modeling and animation techniques. Tech. rep., USC Technical Report, pp. 99–705 (1998)Google Scholar
  104. 104.
    Orozco, J.: Face detection and tracking for facial expression analysis. Ph.D. thesis, Universitat Autónoma de Barcelona (2007)Google Scholar
  105. 105.
    Pandzic, I.S., Forchheimer, R.: MPEG-4 facial animation: the standard. Implementation and applications. Wiley, New York (2003)Google Scholar
  106. 106.
    Papandreou, G., Maragos, P.: Adaptive and constrained algorithms for inverse compositional active appearance model fitting. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)Google Scholar
  107. 107.
    Paquet, U.: Convexity and bayesian constrained local models. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1193–1199 (2009)Google Scholar
  108. 108.
    Pardo, X., Carreira, M., Mosquera, A., Cabello, D.: A snake for CT image segmentation integrating region and edge information. Image Vis. Comput. 19(7), 461–475 (2001)CrossRefGoogle Scholar
  109. 109.
    Parke, F.: Parameterized models for facial animation. IEEE Comput. Graph. Appl. 2(9), 61–68 (1982)CrossRefGoogle Scholar
  110. 110.
    Parke, F.I.: A parametric model for human faces. Ph.D. thesis, University of Utah (1974)Google Scholar
  111. 111.
    Parke, F.I., Waters, K.: Computer facial animation. CRC Press, Boca Raton (2008)Google Scholar
  112. 112.
    Patel, A., Smith, W.: 3D morphable face models revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1327–1334 (2009)Google Scholar
  113. 113.
    Patel, N., Zaveri, M.: 3D facial model reconstruction, expressions synthesis and animation using single frontal face image. Signal, Image Video Process. 7(5), 889–897 (2013)CrossRefGoogle Scholar
  114. 114.
    Peyras, J., Bartoli, A., Mercier, H., Dalle, P.: Segmented aams improve person-independent face fitting. In: In BMVC’07-Proceedings of the 18th British Machine Vision Conference. Citeseer (2007)Google Scholar
  115. 115.
    Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.: Synthesizing realistic facial expressions from photographs. In: ACM SIGGRAPH 2006 Courses, p. 19. ACM (2006)Google Scholar
  116. 116.
    Platt, S., Badler, N.: Animating facial expressions. ACM SIGGRAPH Comput. Graph. 15(3), 245–252 (1981)CrossRefGoogle Scholar
  117. 117.
    Radeva, P., Martí, E.: Facial features segmentation by model-based snakes. In: International Conference on Computing Analysis and Image Processing, Prague, pp. 1–5 (1995)Google Scholar
  118. 118.
    Ravyse, U., Sahli, H.: A biomechanical model for image-based estimation of 3D face deformations. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, pp. 1089–1092 (2008)Google Scholar
  119. 119.
    Rechenberg, I.: Evolutionsstrategie—optimierung technischer systeme nach prinzipien der biologischen evolution. Ph.D. thesis, Berlin Technical University (1971)Google Scholar
  120. 120.
    Roberts, M., Cootes, T., Adams, J.: Linking sequences of active appearance sub-models via constraints: an application in automated vertebral morphometry. In: 14th British Machine Vision Conference, vol. 1, pp. 349–358 (2003)Google Scholar
  121. 121.
    Rogers, M., Graham, J.: Robust active shape model search. In: Computer Vision-ECCV 2002, pp. 517–530. Springer, Berlin (2006)Google Scholar
  122. 122.
    Romdhani, S., Blanz, V., Vetter, T.: Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: European Conference on Computer Vision, pp. 3–19. Springer, Berlin (2002)Google Scholar
  123. 123.
    Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 986–993 (2005)Google Scholar
  124. 124.
    Ross, A.: Procrustes analysis. Department of Computer Science and Engineering, University of South Carolina, Tech. rep. (2004)Google Scholar
  125. 125.
    Rydfalk, M.: Candide, a parameterized face. Tech. rep., Report No LiTH-ISY-I-866, Dept. of Electrical Engineering, Linkoping University, Sweden (1987)Google Scholar
  126. 126.
    Salam, H., Seguier, R., Stoiber, N.: Integrating head pose to a 3D multi-texture approach for gaze detection. Int. J. Multimed. Appl. 5(4), 1 (2013)Google Scholar
  127. 127.
    Salam, H., Stoiber, N., Séguier, R.: A multi-texture approach for estimating iris positions in the eye using 2.5 D active appearance models. In: 2012 19th IEEE International Conference on Image Processing, pp. 1833–1836 (2012)Google Scholar
  128. 128.
    Saragih, J., Goecke, R.: A nonlinear discriminative approach to aam fitting. In: IEEE 11th International Conference on Computer Vision, 2007, ICCV, pp. 1–8 (2007)Google Scholar
  129. 129.
    Saragih, J., Lucey, S., Cohn, J.: Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vis. 91(2), 200–215 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  130. 130.
    Sattar, A., Aidarous, Y., Le Gallou, S., Seguier, R.: Face alignment by 2.5D active appearance model optimized by simplex. In: International Conference on Computer Vision Systems (ICVS), pp. 1–10 (2007)Google Scholar
  131. 131.
    Sattar, A., Aidarous, Y., Seguier, R.: Gagm-aam: a genetic optimization with gaussian mixtures for active appearance models. In: IEEE International Conference on Image Processing (ICIP’08), pp. 3220–3223 (2008)Google Scholar
  132. 132.
    Sattar, A., Seguier, R.: Facial feature extraction using hybrid genetic-simplex optimization in multi-objective active appearance model. In: IEEE Fifth International Conference on Digital Information Management (ICDIM), pp. 152–158 (2010)Google Scholar
  133. 133.
    Sclaroff, S., Isidoro, J.: Active blobs. In: Sixth International Conference on Computer Vision, pp. 1146–1153 (1998)Google Scholar
  134. 134.
    Sederberg, T.W., Scott, P.R.: Free-form deformation of solid geometric models. ACM SIGGRAPH Comput. Graph. 20(4), 151–160 (1986)CrossRefGoogle Scholar
  135. 135.
    Senechal, T., Rapp, V., Salam, H., Seguier, R., Bailly, K., Prevost, L.: Combining aam coefficients with lgbp histograms in the multi-kernel svm framework to detect facial action units. In: IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG 2011), pp. 860–865 (2011)Google Scholar
  136. 136.
    Senechal, T., Rapp, V., Salam, H., Seguier, R., Bailly, K., Prevost, L.: Facial action recognition combining heterogeneous features via multikernel learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42(4), 993–1005 (2012)Google Scholar
  137. 137.
    Sguier, R., Le Gallou, S., Breton, G., Garcia, C.: Adapted active appearance models. EURASIP J. Image Video Process. 2009(10) (2009)Google Scholar
  138. 138.
    Shin, H., Lee, Y.: Expression synthesis and transfer in parameter spaces. Comput. Graph. Forum 28(7), 1829–1835 (2009)CrossRefGoogle Scholar
  139. 139.
    Soladié, C., Salam, H., Pelachaud, C., Stoiber, N., Séguier, R.: A multimodal fuzzy inference system using a continuous facial expression representation for emotion detection. In: Proceedings of the 14th ACM international conference on Multimodal interaction, pp. 493–500 (2012)Google Scholar
  140. 140.
    Stegmann, M.B.: Aam-api. a c++ implementation of the active appearance model framework. http://www.imm.dtu.dk/~aam/
  141. 141.
    Stoiber, N.: Modeling emotional facial expressions and their dynamics for realistic interactive facial animation on virtual characters. Ph.D. thesis, Universit de Rennes1 (2010)Google Scholar
  142. 142.
    Storer, M., Urschler, M., Bischof, H.: 3D-mam: 3D morphable appearance model for efficient fine head pose estimation from still images. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 192–199 (2009)Google Scholar
  143. 143.
    Stricker, R., Martin, C., Gross, H.: Increasing the robustness of 2D active appearance models for real-world applications. In: International Conference on Computer Vision Systems, pp. 364–373. Springer, Berlin (2009)Google Scholar
  144. 144.
    Su, Y., Gao, X., Tao, D., Li, X.: Gabor-based texture representation in aams. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 2236–2240 (2008)Google Scholar
  145. 145.
    Sung, J., Kanade, T., Kim, D.: A unified gradient-based approach for combining asm into aam. Int. J. Comput. Vis. 75(2), 297–309 (2007)CrossRefGoogle Scholar
  146. 146.
    Sung, J., Kim, D.: A background robust active appearance model using active contour technique. Pattern recognit. 40(1), 108–120 (2007)CrossRefzbMATHGoogle Scholar
  147. 147.
    Tao, H., Huang, T.: Explanation-based facial motion tracking using a piecewise bezier volume deformation model. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–7 (1999)Google Scholar
  148. 148.
    Terzopoulos, D., Waters, K.: Physically-based facial modelling, analysis, and animation. J. Vis. Comput. Animat. 1(2), 73–80 (1990)CrossRefGoogle Scholar
  149. 149.
    Tian, Y., Kanade, T., Cohn, J.F.: Facial expression recognition. In: Handbook of Face Recognition, pp. 487–519. Springer, Berlin (2011)Google Scholar
  150. 150.
    Tresadern, P., Bhaskar, H., Adeshina, S., Taylor, C., Cootes, T.: Combining local and global shape models for deformable object matching. In: Proc. British Machine Vision Conference, pp. 1–12 (2009)Google Scholar
  151. 151.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  152. 152.
    Tzimiropoulos, G.: Active appearance models (aams). a fast but exact version of the simultaneous inverse compositional algorithm (sic). http://www.mathworks.com/matlabcentral/fileexchange/44651-active-appearance-models--aams-
  153. 153.
    Tzimiropoulos, G., Alabort-i Medina, J., Zafeiriou, S., Pantic, M.: Generic active appearance models revisited. In: Computer Vision—ACCV 2012, pp. 650–663. Springer, Berlin (2012)Google Scholar
  154. 154.
    Tzimiropoulos, G., Pantic, M.: Optimization problems for fast aam fitting in-the-wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 593–600 (2013)Google Scholar
  155. 155.
    Van Ginneken, B., Frangi, A.F., Staal, J.J., Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Transactions on medical Imaging21(8), 924–933 (2002)Google Scholar
  156. 156.
    Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005)CrossRefGoogle Scholar
  157. 157.
    Wang, Y., Lucey, S., Cohn, J.F.: Enforcing convexity for improved alignment with constrained local models. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8 (2008)Google Scholar
  158. 158.
    Waters, K.: A muscle model for animation three-dimensional facial expression. ACM SIGGRAPH Comput. Graph. 21(4), 17–24 (1987)CrossRefGoogle Scholar
  159. 159.
    Weissenfeld, A., Urfalioglu, O., Liu, K., Ostermann, J.: Robust rigid head motion estimation based on differential evolution. In: IEEE International Conference on Multimedia and Expo, pp. 225–228 (2006)Google Scholar
  160. 160.
    Wen, Z., Huang, T.S.: 3D face processing, modeling, analysis and synthesis. Kluwer academic publishers, Dordrecht (2004)Google Scholar
  161. 161.
    Wen, Z., Huang, T.S.: 3D Face Processing: modeling, analysis and synthesis, vol. 8. Springer, Berlin (2006)Google Scholar
  162. 162.
    Whitmarsh, T., Veltkamp, R., Spagnuolo, M., Marini, S., ter Haar, F.: Landmark detection on 3D face scans by facial model registration. In: 1st international symposium on shapes and semantics, pp. 71–75 (2006)Google Scholar
  163. 163.
    Wiskott, L., Fellous, J., Kuiger, N., Von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)CrossRefGoogle Scholar
  164. 164.
    Wu, Y., Liu, H., Zha, H.: A new method of detecting human eyelids based on deformable templates. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 604–609 (2004)Google Scholar
  165. 165.
    Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2D+3D active appearance models. In: Proceedings of the 2004 IEEE computer society conference on Computer vision and pattern recognition, pp. 535–542 (2004)Google Scholar
  166. 166.
    Xin, W., Yunxia, T.: A faster b spline snake. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2314–2319 (2009)Google Scholar
  167. 167.
    Xu, Z., Chen, H., Zhu, S., Luo, J.: A hierarchical compositional model for face representation and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)CrossRefGoogle Scholar
  168. 168.
    Yan, P., Xu, S., Turkbey, B., Kruecker, J.: Discrete deformable model guided by partial active shape model for trus image segmentation. IEEE Trans Biomed. Eng. 57(5), 1158–1166 (2010)CrossRefGoogle Scholar
  169. 169.
    Yan, X.: Constrained local model (clm) implementation. https://sites.google.com/site/xgyanhome/home/projects/clm-implementation
  170. 170.
    Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1385–1392 (2011)Google Scholar
  171. 171.
    Ybanez Zepeda, J.: A linear estimation of the face’s tridimensional pose and facial expressions. Ph.D. thesis, Telecom ParisTech (2007)Google Scholar
  172. 172.
    Yongxin, G., Dan, Y., Jiwen, L., Bo, L., Xiaohong, Z.: Active appearance models using statistical characteristics of gabor based texture representation. J. Vis. Commun. Image Represent. 24(5), 627–634 (2013)CrossRefGoogle Scholar
  173. 173.
    Yu, M., Tiddeman, B.P.: Facial feature detection and tracking with a 3d constrained local model. In: International Conferences in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), pp. 181–188 (2010)Google Scholar
  174. 174.
    Yuille, A., Hallinan, P.W., Cohen, D.S.: Feature extraction from faces using deformable templates. Int. J. Comput. Vis. 8(2), 99–111 (1992)CrossRefGoogle Scholar
  175. 175.
    Zalewski, L., Gong, S.: 2D statistical models of facial expressions for realistic 3D avatar animation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, vol. 2, pp. 217–222 (2005)Google Scholar
  176. 176.
    Zhang, C., Cohen, F.: Component-based active appearance models for face modelling. In: Advances in Biometrics, pp. 206–212. Springer, Berlin (2005)Google Scholar
  177. 177.
    Zheng, S., Sturgess, P., Torr, P.H.S.: Approximate structured output learning for constrained local models with application to real-time facial feature detection and tracking on low-power devices. In: 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8 (2013)Google Scholar
  178. 178.
    Zhou, Y., Gu, L., Zhang, H.: Bayesian tangent shape model: Estimating shape and pose parameters via bayesian inference. In: Proceedings, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I–109 (2003)Google Scholar
  179. 179.
    Zhu, X.: Face detection, pose estimation and landmark localization in the wild. https://www.ics.uci.edu/~xzhu/face/
  180. 180.
    Zhu, X., Ramanan, D.: Face detection, pose estimation and landmark localization in the wild. In: Computer Vision and Pattern Recognition (CVPR), pp. 68–79 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ISIR laboratoryPierre and Marie Curie universityParis Cedex 05France
  2. 2.FAST, Supélec, Avenue de la BoulaieCesson-SévignéFrance

Personalised recommendations