Customization and fabrication of the appearance for humanoid robot

Abstract

Designing a robot’s appearance is a challenging task because the design should be both aesthetically appealing and physically functional. Therefore, this task was previously limited to experts with professional knowledge and experiences. Given the increasing popularity of consumer-level robots, non-professional users are expecting tools that allow them to customize their robot appearance. We address this challenge with the technology of additive manufacturing and propose an end-to-end solution to customize and fabricate the robot appearance for non-professional users. The input to our solution is a triangular character mesh (commonly used in feature animations and video games) and the output is a set of 3D-printing-ready shell parts. The complete solution includes matching the shape of the character mesh with the robot endoskeleton, optimizing the shape design to maximally avoid collisions and adjusting the motion trajectories to adapt to new shell design. This approach requires no professional background in engineering design and efficiently produces accurate prototypes of robot shells. Both virtual and physically printed designs are demonstrated on a consumer level humanoid robot to validate the feasibility of our method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Aldebaran: Cool robots. https://www.aldebaran.com/en/cool-robots (2016). Accessed: 2016-05-06

  2. 2.

    Bächer, M., Bickel, B., James, D.L., Pfister, H.: Fabricating articulated characters from skinned meshes. ACM Trans. Graph. (TOG) 31(4), 47 (2012)

    Article  Google Scholar 

  3. 3.

    Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (TOG) 33(4), 96 (2014)

    Article  Google Scholar 

  4. 4.

    Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: An integrated package for nonlinear optimization. In: Large-scale nonlinear optimization, Springer, pp. 35–59 (2006)

  5. 5.

    Calì, J., Calian, D.A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., Weyrich, T.: 3d-printing of non-assembly, articulated models. ACM Trans. Graph. (TOG) 31(6), 130 (2012)

    Article  Google Scholar 

  6. 6.

    Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W., Matusik, W., Bickel, B.: Computational design of mechanical characters. ACM Trans. Graph. (TOG) 32(4), 83 (2013)

    Article  MATH  Google Scholar 

  7. 7.

    Coumans, E.: Bullet physics engine. Open Source Software: http://bulletphysics.org 1 (2010)

  8. 8.

    Flowers, L.: Poppy project. https://www.poppy-project.org/ (2016). Accessed: 2016-03-21

  9. 9.

    Fu, C.W., Chi-Wing, F., Peng, S., Xiaoqi, Y., Yang, L.W., Jayaraman, P.K., Daniel, C.O.: Computational interlocking furniture assembly. ACM Trans. Graph. (TOG) 34(4), 91:1–91:11 (2015)

    Article  MATH  Google Scholar 

  10. 10.

    Golovinskiy, A., Aleksey, G., Thomas, F.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)

    Article  Google Scholar 

  11. 11.

    Hao, J., Jingbin, H., Liang, F., Williams, R.E.: An efficient curvature-based partitioning of large-scale STL models. Rapid Prototyp. J. 17(2), 116–127 (2011)

    Article  Google Scholar 

  12. 12.

    Haring, K.S., Katsumi, W., Celine, M.: The influence of robot appearance on assessment. In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2013)

  13. 13.

    Hildebrand, K., Kristian, H., Bernd, B., Marc, A.: Orthogonal slicing for additive manufacturing. Comput. Graph. 37(6), 669–675 (2013)

    Article  Google Scholar 

  14. 14.

    Hu, R., Ruizhen, H., Honghua, L., Hao, Z., Daniel, C.O.: Approximate pyramidal shape decomposition. ACM Trans. Graph. (TOG) 33(6), 1–12 (2014)

    Google Scholar 

  15. 15.

    van Kaick, O., Andrea, T., Oana, S., Hao, Z., Daniel, C.O., Lior, W., Ghassan, H.: Prior knowledge for part correspondence. Comput. Graph. Forum 30(2), 553–562 (2011)

    Article  Google Scholar 

  16. 16.

    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, vol. 2, pp. 1620–1626. IEEE (2003)

  17. 17.

    Koo, B., Li, W., Yao, J., Agrawala, M., Mitra, N.J.: Creating works-like prototypes of mechanical objects. ACM Transactions on Graphics (Special issue of SIGGRAPH Asia 2014) (2014)

  18. 18.

    Langevin, G.: Inmoov project. http://inmoov.fr/ (2016). Accessed: 2016-03-21

  19. 19.

    LEGO: Mindstorms. http://www.lego.com/en-us/mindstorms/ (2016). Accessed: 2016-05-06

  20. 20.

    Megaro, V., Thomaszewski, B., Gauge, D., Grinspun, E., Coros, S., Gross, M.H.: Chacra: An interactive design system for rapid character crafting. In: Symposium on Computer Animation, pp. 123–130 (2014)

  21. 21.

    Megaro, V., Vittorio, M., Bernhard, T., Maurizio, N., Otmar, H., Markus, G., Stelian, C.: Interactive design of 3d-printable robotic creatures. ACM Trans. Graph. (TOG) 34(6), 1–9 (2015)

    Article  Google Scholar 

  22. 22.

    Mehta, A.M., DelPreto, J., Shaya, B., Rus, D.: Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pp. 2892–2897. IEEE (2014)

  23. 23.

    Mehta, A.M., Rus, D.: An end-to-end system for designing mechanical structures for print-and-fold robots. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 1460–1465. IEEE (2014)

  24. 24.

    Prévost, R., Whiting, E., Lefebvre, S., Sorkine-Hornung, O.: Make it stand: balancing shapes for 3d fabrication. ACM Trans. Graph. (TOG) 32(4), 81 (2013)

    Article  MATH  Google Scholar 

  25. 25.

    Robotics, T.: Hr-os1 humanoid endoskeleton. http://www.trossenrobotics.com/HR-OS1 (2016). Accessed: 2016-03-21

  26. 26.

    Robotis: Ax-12a actuator e-manual. http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm (2016). Accessed: 2016-05-11

  27. 27.

    Robotis: Open platform humanoid project. http://www.robotis.com/xe/darwin_en (2016). Accessed: 2016-03-21

  28. 28.

    Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3d objects. Int. J. Comput. Vision 89(2), 309–326 (2010)

    Article  Google Scholar 

  29. 29.

    Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Visual Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  30. 30.

    Skouras, M., Mélina, S., Bernhard, T., Stelian, C., Bernd, B., Markus, G.: Computational design of actuated deformable characters. ACM Trans. Graph. (TOG) 32(4), 1 (2013)

    Article  Google Scholar 

  31. 31.

    Slyper, R., Ronit, S., Jessica, H.: Prototyping robot appearance, movement, and interactions using flexible 3D printing and air pressure sensors. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication (2012)

  32. 32.

    Song, P., Peng, S., Zhongqi, F., Ligang, L., Chi-Wing, F.: Printing 3D objects with interlocking parts. Comput. Aided Geom. Des. 35–36, 137–148 (2015)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Syrdal, D.S., Dautenhahn, K., Woods, S.N., Walters, M.L., Koay, K.L.: Looking good? appearance preferences and robot personality inferences at zero acquaintance. In AAAI Spring Symposium: Multidisciplinary Collaboration for Socially Assistive Robotics pp. 86–92 (2007)

  34. 34.

    The CGAL Project: CGAL User and Reference Manual, 4.8 edn. CGAL Editorial Board (2016). http://doc.cgal.org/4.8/Manual/packages.html

  35. 35.

    Thomaszewski, B., Bernhard, T., Stelian, C., Damien, G., Vittorio, M., Eitan, G., Markus, G.: Computational design of linkage-based characters. ACM Trans. Graph. (TOG) 33(4), 1–9 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research, which is carried out at BeingThere Centre, collaboration among IMI of Nanyang Technological University (NTU) Singapore, ETH Zürich, and UNC Chapel Hill, is supported by the Singapore National Research Foundation (NRF) under its International Research Centre @ Singapore Funding Initiative and administered by the Interactive Digital Media Programme Office (IDMPO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shihui Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 11960 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Xu, H., Thalmann, N.M. et al. Customization and fabrication of the appearance for humanoid robot. Vis Comput 33, 63–74 (2017). https://doi.org/10.1007/s00371-016-1329-6

Download citation

Keywords

  • Additive Manufacturing
  • Humanoid Robot
  • Sequential Quadratic Programming
  • Collision Detection
  • Acrylonitrile Butadiene Styrene