Skip to main content

Advertisement

Log in

Motion normalization method based on an inverted pendulum model for clustering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In many creative industries, such as the animation, movie, and game industries, artists often make good use of motion data to create their works by retrieving a particular motion from motion-capture data and reusing it. A large database of human motion is difficult to use unless the motion data are organized according to the type of motion. Although there have been many results for clustering motion capture data, many variations in the motion data complicate the clustering of data by making one type of motion numerically similar to other types of motions. To improve the motion clustering performance, we present a novel physically based motion normalization method that reduces ambiguous elements of motions, so that motions that have different semantics can be differentiated. The normalized motion data generated by our method can be used as input to existing clustering algorithms and improves the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agrawal, S., Shen, S., van de Panne, M.: Diverse motion variations for physics-based character animation. In: Proceedings of the 2013 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2013)

  2. Barbič, J., Safonova, A., Pan, J.Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.: Segmenting motion capture data into distinct behaviors. In: Proceedings of the 2004 Graphics Interface Conference, pp. 185–194 (2004)

  3. Barnachon, M., Bouakaz, S., Boufama, B., Guillou, E.: Ongoing human action recognition with motion capture. Pattern Recognit. 47(1), 238–247 (2014)

    Article  Google Scholar 

  4. van Basten, B.J.H., Stüvel, S.A., Egges, A.: A hybrid interpolation scheme for footprint-driven walking synthesis. In: Proceedings of Graphics Interface 2011, GI ’11, pp. 9–16 (2011)

  5. Beaudoin, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 117–126 (2008)

  6. Choi, M.G., Yang, K., Igarashi, T., Mitani, J., Lee, J.: Retrieval and visualization of human motion data via stick figures. Comput. Graph. Forum 31(7–1), 2057–2065 (2012)

    Article  Google Scholar 

  7. Chung, S.K., Hahn, J.K.: Animation of human walking in virtual environments. In: Proceedings of the Computer Animation, CA ’99, pp. 4– (1999)

  8. Coros, S., Beaudoin, P., Yin, K.K., van de Pann, M.: Synthesis of constrained walking skills. ACM Trans. Graph. 27(5), 113:1–113:9 (2008)

    Article  Google Scholar 

  9. Deng, Z., Gu, Q., Li, Q.: Perceptually consistent example-based human motion retrieval. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 191–198 (2009)

  10. Feng, Y., Ji, M., Xiao, J., Yang, X., Zhang, J.J., Zhuang, Y., Li, X.: Mining spatial-temporal patterns and structural sparsity for human motion data denoising. IEEE Trans. Cybern. 45(12), 2693–2706 (2015)

    Article  Google Scholar 

  11. Gao, Y., Ma, L., Chen, Z., Wu, X.: Motion normalization. In: Tao, J., Tan, T., Picard, R. (Eds.) Affective Computing and Intelligent Interaction, Lecture Notes in Computer Science, vol. 3784. Springer, Berlin pp. 95–101 (2005)

  12. Girard, M.: Interactive design of computer-animated animal motion. IEEE Comput. Graph. Appl. 7(6), 39–51 (1987)

    Article  Google Scholar 

  13. Heck, R., Gleicher, M.: Parametric motion graphs. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 129–136 (2007)

  14. Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics. In: SIGGRAPH, pp. 71–78 (1995)

  15. Hou, J., Chau, L., Magnenat-Thalmann, N., He, Y.: Human motion capture data tailored transform coding. IEEE Trans. Vis. Comput. Graph. 21(7), 848–859 (2015)

    Article  Google Scholar 

  16. Jenkins, O.C., Mataric, M.J.: Automated derivation of behavior vocabularies for autonomous humanoid motion. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 225–232 (2003)

  17. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the 2003 IEEE international Conference on Robotics and Automation, pp. 1620–1626 (2003)

  18. Kapadia, M., Chiang, I.K., Thomas, T., Badler, N.I., Kider Jr., J.T.: Efficient motion retrieval in large motion databases. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 19–28 (2013)

  19. Kovar, L., Gleicher, M.: Flexible automatic motion blending with registration curves. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, pp. 214–224 (2003)

  20. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23(3), 559–568 (2004)

    Article  Google Scholar 

  21. Kwon, T., Cho, Y.S., Park, S.I., Shin, S.Y.: Two-character motion analysis and synthesis. IEEE Trans. Vis. Comput. Graph. 14(3), 707–720 (2008)

    Article  Google Scholar 

  22. Kwon, T., Hodgins, J.: Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 129–138 (2010)

  23. Kwon, T., Shin, S.Y.: Motion modeling for on-line locomotion synthesis. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 29–38 (2005)

  24. de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. 29, 131:1–131:10 (2010)

    Google Scholar 

  25. Lee, T., Park, J., Kwon, T.: Adaptive locomotion on slopes and stairs using pelvic rotation. Vis. Comput. 31(6), 873–881 (2015)

    Article  Google Scholar 

  26. Liu, C.K., Popovic, Z.: Synthesis of complex dynamic character motion from simple animations. In: SIGGRAPH 2002 Conference Proceedings, pp. 408–416 (2002)

  27. Lpez-mndez, A., Gall, J., Casas, J., Gool, L.V.: Metric learning from poses for temporal clustering of human motion. In: Proceedings of the British Machine Vision Conference, pp. 49.1–49.12 (2012)

  28. Min, J., Chai, J.: Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. 31(6), 153 (2012)

    Article  Google Scholar 

  29. Min, J., Chen, Y.L., Chai, J.: Interactive generation of human animation with deformable motion models. ACM Trans. Graph. 29(1), 9:1–9:12 (2009)

    Article  Google Scholar 

  30. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. 24(3), 1062–1070 (2005)

    Article  Google Scholar 

  31. Müller, M., Baak, A., Seidel, H.P.: Efficient and robust annotation of motion capture data. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17–26 (2009)

  32. Müller, M., Röder, T.: Motion templates for automatic classification and retrieval of motion capture data. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 137–146 (2006)

  33. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans. Graph. 24(3), 677–685 (2005)

    Article  Google Scholar 

  34. van de Panne, M.: From footprints to animation. Comput. Graph. Forum 16(4), 211–223 (1997)

    Article  Google Scholar 

  35. Park, S.I., Shin, H.J., Shin, S.Y.: On-line locomotion generation based on motion blending. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 105–111 (2002)

  36. Porres, A.B., Pelechano, N., Kapadia, M., Badler, N.I.: Footstep parameterized motion blending using barycentric coordinates. Comput. Graph. 47(C), 105–112 (2015)

    Google Scholar 

  37. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)

    Article  Google Scholar 

  38. Shin, H.J., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, PG ’03, p. 194 (2003)

  39. Shin, H.J., Oh, H.S.: Fat graphs: constructing an interactive character with continuous controls. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 291–298 (2006)

  40. Singh, S., Kapadia, M., Reinman, G., Faloutsos, P.: Footstep navigation for dynamic crowds. Comput. Anim. Virtual Worlds 22(2–3), 151–158 (2011)

    Article  Google Scholar 

  41. Sugihara, T.: Standing stabilizability and stepping maneuver in planar bipedalism based on the best com-zmp regulator. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 1966–1971 (2009)

  42. Wang, Y., Huang, K., Tan, T.: Human activity recognition based on r transform. Comput. Vis. Pattern Recognit. 2007, 1–8 (2007)

    Google Scholar 

  43. Wang, Z., Feng, Y., Qi, T., Yang, X., Zhang, J.J.: Adaptive multi-view feature selection for human motion retrieval. Sig. Process 120(C), 691–701 (2016)

    Article  Google Scholar 

  44. Wu, C.C., Zordan, V.: Goal-directed stepping with momentum control. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’10, pp. 113–118 (2010)

  45. Zhou, F., De la Torre, F., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35(3), 582–596 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University (HY-201200000000616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesoo Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Kang, D. & Kwon, T. Motion normalization method based on an inverted pendulum model for clustering. Vis Comput 34, 29–40 (2018). https://doi.org/10.1007/s00371-016-1308-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1308-y

Keywords

Navigation