Skip to main content
Log in

Aggregating complementary boundary contrast with smoothing for salient region detection

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Automatic to locate the salient regions in the images are useful for many computer vision and computer graphics tasks. However, the previous techniques prefer to give noisy and fuzzy saliency maps, which will be a crucial limitation for the performance of subsequent image processing. In this paper, we present a novel framework by aggregating various bottom-up cues and bias to enhance visual saliency detection. It can produce high-resolution, full-field saliency map which can be close to binary one and more effective in real-world applications. First, the proposed method concentrates on multiple saliency cues in a global context, such as regional contrast, spatial relationship and color histogram smoothing to produce a coarse saliency map. Second, combining complementary boundary prior with smoothing, we iteratively refine the coarse saliency map to improve the contrast between salient and non-salient regions until a close to binary saliency map is reached. Finally, we evaluate our salient region detection on two publicly available datasets with pixel accurate annotations. The experimental results show that the proposed method performs equally or better than the 12 alternative methods and retains comparable detection accuracy, even in extreme cases. Furthermore, we demonstrate that the saliency map produced by our approach can serve as a good initialization for automatic alpha matting and image retargeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 1597–1604 (2009)

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  3. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans, Graph (2007)

    Book  Google Scholar 

  4. Borji, A., Itti, L.: CAT2000: A Large Scale fixation dataset for boosting saliency research. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Workshop on Future of Datasets (2015)

  5. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013)

  6. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: European Conference on Computer Vision (2012)

  7. Borji, A., Cheng, M., Huaizu, J., Jia, L.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  8. Cheng, M., Mitra, N.J., Huang, X., Hu, S.: SalientShape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)

    Article  Google Scholar 

  9. Cheng, M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  10. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. (IJCV) 59(2), 167–181 (2004)

    Article  Google Scholar 

  11. Frintrop, S., Klodt, M., Rome, E.: A real-time visual attention system using integral images. In: International Conference on Computer Vision Systems (2007)

  12. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  13. Harel, J., Koch, C., Perona, P.: Graph based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2006)

  14. Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends Cogn Sci 9, 188–194 (2005)

    Article  Google Scholar 

  15. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)

  16. Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene analysis. In: IEEE Trans. Pattern Anal. Mach. Intell. pp. 1254–1259 (1998)

  17. Koch, C., Poggio, T.: Predicting the visual world: silence is golden. Nat. Neurosci. 2, 9–10 (1999)

    Article  Google Scholar 

  18. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurbiol. 4, 219–227 (1985)

    Google Scholar 

  19. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N.: X, T., H.Y., S.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)

    Article  Google Scholar 

  20. Ma, Y.F., Zhang, H.J.: Contrast based image attention analysis by using fuzzy growing. In: ACM Multimedia, pp. 374–381 (2003)

  21. Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. ACM Multimedia (2003)

  22. Panozzo, D., Weber, O., Sorkine, O.: Robust image retargeting via axis-aligned deformation. Eurographics. 31(2), 229–236 (2012)

    Google Scholar 

  23. Perazzi, F., Krahenbuhl, P., Pritch, Y., et al.: Saliency filters: contrast based filtering for salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

  24. Ran, M., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. Vis. Comput. 29(5), 381–392 (2013)

    Article  Google Scholar 

  25. Rhemann,C., Rother, C., Wang, J,. Gelautz, M., Kohli, P., Rott, P.: A perceptually motivated online benchmark for image matting. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

  26. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM TOG 23(3), 309314 (2004)

    Article  Google Scholar 

  27. Rubinstein, M., Shamir, A., Avidan, S.: Improved seam carving for video retargeting. ACM Trans. Graph. 27, 15–19 (2008)

    Article  Google Scholar 

  28. Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving image matting using comprehensive sampling sets. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

  29. Tatler, B.: The central fixation bias in scene viewing: selecting an optimal viewing position ndependently of motor biases and image feature distributions. J. Vis. 7(14), 1–17 (2007)

    Article  Google Scholar 

  30. Tavakoli, HR., Rahtu, E., Heikkil, J.: Fast and efficient saliency detection using sparse sampling and Kernel density estimation. In: Scandinavian Conference on Image Analysis (2011)

  31. Tong, N., Lu, H., Zhang, L., Xiang, R.: Saliency Detection with Multi-Scale Superpixels. IEEE Signal Process. Lett. 21(9), 1035–1039 (2014)

    Article  Google Scholar 

  32. Treisman, A., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)

    Article  Google Scholar 

  33. Wang, D., Li, G., Jia, W., Luo, X.: Saliency-driven scaling optimization for image retargeting. Vis. Comput. 27(9), 853–860 (2011)

    Article  Google Scholar 

  34. Wang, K., Lin, L., Lu, J., Li, C., Shi, K.: PISA: pixelwise image Saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans. Image Process. 24(10), 3019–3032 (2015)

    Article  MathSciNet  Google Scholar 

  35. Wei, Y.C., Wen, F., Zhu, W.J., Sun, J.: Geodesic saliency using background priors. In: European Conference on Computer Vision (2012)

  36. Wu, H., Li, G., Luo, X.: Weighted attentional blocks for probabilistic object tracking. Vis. Comput. 30(2), 229–243 (2014)

    Article  Google Scholar 

  37. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. IEEE Conf. Comput. Vis. Pattern Recognit. 9(4), 1155–1162 (2013)

    Google Scholar 

  38. Yang, J.,Yang, M.: Top-down visual saliency via joint crf and dictionary learning. In: IEEE Conference on Computer Vision and Pattern Recognition. pp, 2296–2303 (2012)

  39. Yang, C., Zhang, L.H., Lu, H.C.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)

    Article  Google Scholar 

  40. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition. pp, 3166–3173 (2013)

  41. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia, pp. 815–824 (2006)

  42. Zhang, H., Xu, M., Zhuo, L., Havyarimana, V.: A novel optimization framework for salient object detection. Vis. Comput. 32(1), 1–11 (2014)

    Article  Google Scholar 

  43. Zhang, J., Sclaroff, S.: Exploiting surroundedness for saliency detection: a Boolean Map approach. IEEE Trans. Pattern Anal. Mach. Intell (2015). doi:10.1109/TPAMI.2015.2473844

    Google Scholar 

  44. Zhong, G., Liu, R., Cao, J., Su, Z.: A generalized nonlocal mean framework with object-level cues for saliency detection. Vis. Comput. (2015). doi:10.1007/s00371-015-1077-z

    Google Scholar 

  45. Zhu, H., Cai, J., Zheng, J., Wu, J., Magnenat Thalmann, N.: Salient object cutout using Google images. In: IEEE International Symposium on Circuits and Systems. pp, 19–23 (2013)

  46. Zhu, W., Liang, S., Wei, Y., Sun, J., Cottrell, G.: Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Cai, J., Zhang, H. et al. Aggregating complementary boundary contrast with smoothing for salient region detection. Vis Comput 33, 1155–1167 (2017). https://doi.org/10.1007/s00371-016-1278-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1278-0

Keywords

Navigation