Abstract
Automatic to locate the salient regions in the images are useful for many computer vision and computer graphics tasks. However, the previous techniques prefer to give noisy and fuzzy saliency maps, which will be a crucial limitation for the performance of subsequent image processing. In this paper, we present a novel framework by aggregating various bottom-up cues and bias to enhance visual saliency detection. It can produce high-resolution, full-field saliency map which can be close to binary one and more effective in real-world applications. First, the proposed method concentrates on multiple saliency cues in a global context, such as regional contrast, spatial relationship and color histogram smoothing to produce a coarse saliency map. Second, combining complementary boundary prior with smoothing, we iteratively refine the coarse saliency map to improve the contrast between salient and non-salient regions until a close to binary saliency map is reached. Finally, we evaluate our salient region detection on two publicly available datasets with pixel accurate annotations. The experimental results show that the proposed method performs equally or better than the 12 alternative methods and retains comparable detection accuracy, even in extreme cases. Furthermore, we demonstrate that the saliency map produced by our approach can serve as a good initialization for automatic alpha matting and image retargeting.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 1597–1604 (2009)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans, Graph (2007)
Borji, A., Itti, L.: CAT2000: A Large Scale fixation dataset for boosting saliency research. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Workshop on Future of Datasets (2015)
Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013)
Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: European Conference on Computer Vision (2012)
Borji, A., Cheng, M., Huaizu, J., Jia, L.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)
Cheng, M., Mitra, N.J., Huang, X., Hu, S.: SalientShape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)
Cheng, M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. (IJCV) 59(2), 167–181 (2004)
Frintrop, S., Klodt, M., Rome, E.: A real-time visual attention system using integral images. In: International Conference on Computer Vision Systems (2007)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)
Harel, J., Koch, C., Perona, P.: Graph based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2006)
Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends Cogn Sci 9, 188–194 (2005)
Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)
Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene analysis. In: IEEE Trans. Pattern Anal. Mach. Intell. pp. 1254–1259 (1998)
Koch, C., Poggio, T.: Predicting the visual world: silence is golden. Nat. Neurosci. 2, 9–10 (1999)
Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurbiol. 4, 219–227 (1985)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N.: X, T., H.Y., S.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)
Ma, Y.F., Zhang, H.J.: Contrast based image attention analysis by using fuzzy growing. In: ACM Multimedia, pp. 374–381 (2003)
Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. ACM Multimedia (2003)
Panozzo, D., Weber, O., Sorkine, O.: Robust image retargeting via axis-aligned deformation. Eurographics. 31(2), 229–236 (2012)
Perazzi, F., Krahenbuhl, P., Pritch, Y., et al.: Saliency filters: contrast based filtering for salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
Ran, M., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. Vis. Comput. 29(5), 381–392 (2013)
Rhemann,C., Rother, C., Wang, J,. Gelautz, M., Kohli, P., Rott, P.: A perceptually motivated online benchmark for image matting. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)
Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM TOG 23(3), 309314 (2004)
Rubinstein, M., Shamir, A., Avidan, S.: Improved seam carving for video retargeting. ACM Trans. Graph. 27, 15–19 (2008)
Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving image matting using comprehensive sampling sets. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)
Tatler, B.: The central fixation bias in scene viewing: selecting an optimal viewing position ndependently of motor biases and image feature distributions. J. Vis. 7(14), 1–17 (2007)
Tavakoli, HR., Rahtu, E., Heikkil, J.: Fast and efficient saliency detection using sparse sampling and Kernel density estimation. In: Scandinavian Conference on Image Analysis (2011)
Tong, N., Lu, H., Zhang, L., Xiang, R.: Saliency Detection with Multi-Scale Superpixels. IEEE Signal Process. Lett. 21(9), 1035–1039 (2014)
Treisman, A., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)
Wang, D., Li, G., Jia, W., Luo, X.: Saliency-driven scaling optimization for image retargeting. Vis. Comput. 27(9), 853–860 (2011)
Wang, K., Lin, L., Lu, J., Li, C., Shi, K.: PISA: pixelwise image Saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans. Image Process. 24(10), 3019–3032 (2015)
Wei, Y.C., Wen, F., Zhu, W.J., Sun, J.: Geodesic saliency using background priors. In: European Conference on Computer Vision (2012)
Wu, H., Li, G., Luo, X.: Weighted attentional blocks for probabilistic object tracking. Vis. Comput. 30(2), 229–243 (2014)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. IEEE Conf. Comput. Vis. Pattern Recognit. 9(4), 1155–1162 (2013)
Yang, J.,Yang, M.: Top-down visual saliency via joint crf and dictionary learning. In: IEEE Conference on Computer Vision and Pattern Recognition. pp, 2296–2303 (2012)
Yang, C., Zhang, L.H., Lu, H.C.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition. pp, 3166–3173 (2013)
Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia, pp. 815–824 (2006)
Zhang, H., Xu, M., Zhuo, L., Havyarimana, V.: A novel optimization framework for salient object detection. Vis. Comput. 32(1), 1–11 (2014)
Zhang, J., Sclaroff, S.: Exploiting surroundedness for saliency detection: a Boolean Map approach. IEEE Trans. Pattern Anal. Mach. Intell (2015). doi:10.1109/TPAMI.2015.2473844
Zhong, G., Liu, R., Cao, J., Su, Z.: A generalized nonlocal mean framework with object-level cues for saliency detection. Vis. Comput. (2015). doi:10.1007/s00371-015-1077-z
Zhu, H., Cai, J., Zheng, J., Wu, J., Magnenat Thalmann, N.: Salient object cutout using Google images. In: IEEE International Symposium on Circuits and Systems. pp, 19–23 (2013)
Zhu, W., Liang, S., Wei, Y., Sun, J., Cottrell, G.: Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, R., Cai, J., Zhang, H. et al. Aggregating complementary boundary contrast with smoothing for salient region detection. Vis Comput 33, 1155–1167 (2017). https://doi.org/10.1007/s00371-016-1278-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-016-1278-0