Skip to main content
Log in

Generating various composite human faces from real 3D facial images

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript


Generating large human crowds of distinguishable individuals is one of the challenges in the gaming industry. When the scene contains many characters, it becomes impracticable to create all the individual characters manually. However, the requirement for the different appearances of individuals in a crowd, namely their faces, is now in greater demand. Therefore, this paper describes our solution to the automatic generation of human faces that are created as a composite of facial parts of 3D scans of real human faces. However, the user has the possibility to further adjust the composite by designing replacements, leading to a desired appearance. The final composite can be exported and attached to a given avatar. To evaluate the usability of our solution, we performed two case studies. The conducted perception study performed with 104 participants aimed to confirm the decreasing human ability to recognize morphologically modified faces. The morphological study focused on the quantification of the extent of facial modifications. Both studies were performed by domain experts from psychology and anthropology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others


  1. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)

    Article  Google Scholar 

  2. Aubel, A., Boulic, R., Thalmann, D.: Real-time display of virtual humans: levels of details and impostors. IEEE Trans. Circuits Syst. Video Technol. 10, 207–217 (2000)

    Article  Google Scholar 

  3. Bastioni, M., Re, S., Misra, S.: Ideas and methods for modeling 3D human figures: the principal algorithms used by MakeHuman and their implementation in a new approach to parametric modeling. In: Proceedings of the 1st Bangalore Annual Compute Conference, COMPUTE ’08, pp. 10:1–10:6. ACM, New York (2008)

  4. Beacco, A., Pelechano, N., Andújar, C.: A survey of real-time crowd rendering. Comput. Graph. Forum (2015). doi:10.1111/cgf.12774

  5. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL tentative, pp. 586–606. International Society for Optics and Photonics (1992)

  6. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’99, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., New York (1999)

  7. Bruce, V., Young, A.: Face Perception. Psychology Press, New York (2012)

    Google Scholar 

  8. Chalás, I., Urbanová, P., Kotulanová, Z., Jandová, M., Králík, M., Kozlíková, B., Sochor, J.: Forensic 3D facial identication software (FIDENTIS). In: Proceedings of the 20th World Meeting of the International Association of Forensic Sciences (2014)

  9. Deng, Z., Chen, G., Wang, F., Zhou, F.: Mesh merging with mean value coordinates. Proceedings of the 2012 Fourth International Conference on Digital Home. ICDH ’12, pp. 278–282. IEEE Computer Society, Washington, DC (2012)

  10. Dobbyn, S., Hamill, J., O’Conor, K., O’Sullivan, C.: Geopostors: A real-time geometry/impostor crowd rendering system. In: IN SI3D 05: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 95–102. ACM Press (2005)

  11. Dobbyn, S., McDonnell, R., Kavan, L., Collins, S., O’Sullivan, C.: Clothing the masses: real-time clothed crowds with variation. Eurographics 2006 Short Papers, pp. 103–106 (2006)

  12. Fetter, V.: Antropologie. Academia, Praha (1967)

    Google Scholar 

  13. Galvánek, M., Furmanová, K., Chalás, I., Sochor, J.: Automated facial landmark detection, comparison and visualization. In: Proceedings of the 31st Spring conference on Computer Graphics, SCCG ’15 (2015)

  14. Gosselin, D., Sander, P., Mitchell, J.: Drawing a crowd. Shader X3, 505–517 (2005)

    Google Scholar 

  15. Hammer, Ø., Harper, D.A.T., Ryan, P.D.: PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 1–9 (2001)

    Google Scholar 

  16. Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004)

    Article  Google Scholar 

  17. Hilton, A., Beresford, D., Gentils, T., Smith, R., Sun, W., Illingworth, J.: Whole-body modelling of people from multiview images to populate virtual worlds. Vis. Comput. 16(7), 411–436 (2000)

    Article  MATH  Google Scholar 

  18. Ip, H.H.S., Yin, L.: Constructing a 3D individualized head model from two orthogonal views. Vis. Comput. 12(5), 254–266 (1996)

    Article  Google Scholar 

  19. IBM: IBM SPSS Statistics, version 22. (2014). Accessed 14 Dec 2015

  20. Inversions, S.: FaceGen. Accessed 14 Apr 2015

  21. Kähler, K., Haber, J., Yamauchi, H., Seidel, H.P.: Head Shop: generating animated head models with anatomical structure. Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’02, pp. 55–63. ACM, New York (2002)

  22. Kapur, J.N., Sahoo, P.K., Wong, A.K.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29(3), 273–285 (1985)

    Article  Google Scholar 

  23. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  24. Kotulanová, Z., Chalás, I., Urbanová, P.: 3D virtual model database of human faces: Applications in anthropology and forensic sciences. Mikulov Anthropology Meeting. The Dolní Věstonice Studies 20, pp. 177–180. Academy of Sciences of the Czech Republic, Brno (2014)

  25. Kraevoy, V., Sheffer, A.: Template-based mesh completion. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP ’05. Eurographics Association, Aire-la-Ville (2005)

  26. Loménie, N., Stamon, G.: Morphological mesh filtering and \(\alpha \)-objects. Pattern Recognit. Lett. 29(10), 1571–1579 (2008)

    Article  Google Scholar 

  27. Maejima, A., Morishima, S.: Human head modeling based on fast-automatic mesh completion. In: ACM SIGGRAPH ASIA 2009 Posters, SIGGRAPH ASIA ’09, pp. 53:1–53:1. ACM, New York (2009)

  28. Magnenat-Thalmann, N., Thalmann, D.: Virtual humans: thirty years of research, what next? Vis. Comput. 21(12), 997–1015 (2005)

    Article  Google Scholar 

  29. Maim, J., Yersin, B., Pettre, J., Thalmann, D.: YaQ: an architecture for real-time navigation and rendering of varied crowds. IEEE Comput. Graph. Appl. 29(4), 44–53 (2009)

    Article  Google Scholar 

  30. McDonnell, R., Larkin, M., Dobbyn, S., Collins, S., O’Sullivan, C.: Clone attack! perception of crowd variety. ACM Trans. Graph. 27(3), 26 (2008)

    Article  Google Scholar 

  31. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and mathematics III, pp. 35–57. Springer, Berlin (2003)

  32. Oh, S., Kim, H., Magnenat-Thalmann, N., Wohn, K.: Generating unified model for dressed virtual humans. Vis. Comput. 21(8–10), 522–531 (2005)

    Article  Google Scholar 

  33. Pighin, F.H., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.: Synthesizing realistic facial expressions from photographs. In: SIGGRAPH ’98, pp. 75–84 (1998)

  34. Porcher Nedel, L., Thalmann, D.: Anatomic modeling of deformable human bodies. Vis. Comput. 16(6), 306–321 (2000)

    Article  MATH  Google Scholar 

  35. StatSoft, I.: STATISTICA (data analysis software system), version 12. (2013). Accessed 08 Dec 2015

  36. Tecchia, F., Loscos, C., Chrysanthou, Y.: Image/based crowd rendering. IEEE Comput. Graph. Appl. 22(2), 36–43 (2002)

    Article  Google Scholar 

  37. Thalmann, D., Grillon, H., Maim, J., Yersin, B.: Scalable solutions for simulating, animating, and rendering real-time crowds of diverse virtual humans. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds.) Modeling, Simulation and Visual Analysis of Crowds, The International Series in Video Computing, vol. 11, pp. 123–145. Springer, New York (2013)

    Chapter  Google Scholar 

  38. Thalmann, D., O’Sullivan, C., Yersin, B., Maim, J., McDonnell, R.: Populating virtual environments with crowds. Eurograph. Tutor. 1, 21–124 (2007)

    Google Scholar 

  39. Toledo, L., De Gyves, O., Rudomfn, I.: Hierarchical level of detail for varied animated crowds. Vis. Comput. 30(6–8), 949–961 (2014)

    Article  Google Scholar 

  40. Ulicny, B.: Ciechomski, P.d.H., Thalmann, D.: Crowdbrush: Interactive authoring of real-time crowd scenes. Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’04, pp. 243–252. Eurographics Association, Aire-la-Ville (2004)

  41. Ulicny, B., Thalmann, D.: Towards interactive real-time crowd behavior simulation. Comput. Graph. Forum 21, 767–775 (2002)

    Article  Google Scholar 

  42. Urbanová, P., Čuta, M., Kotulanová, Z., Chalás, I.: Somatoskopické znaky člověka. (2010)

  43. Visual Computing Lab, I.C.: MeshLab, version 1.3.2. (2013). Accessed 20 Dec 2015

  44. Zack, G., Rogers, W., Latt, S.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977)

    Article  Google Scholar 

  45. Zinsser, T., Schmidt, J., Niemann, H.: Point set registration with integrated scale estimation. In: International Conference on Pattern Recognition and Image Processing, pp. 116–119 (2005)

Download references


This work was supported by the Masaryk University projects MUNI/A/1213/2014, MUNI/33/08/ 2015, MUNI/FR/1843/2014, and MUNI/A/1281/2014.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Igor Chalás.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalás, I., Urbanová, P., Juřík, V. et al. Generating various composite human faces from real 3D facial images. Vis Comput 33, 443–458 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI: