The Visual Computer

, Volume 33, Issue 9, pp 1121–1139 | Cite as

Scalable texture compression using the wavelet transform

  • Bob AndriesEmail author
  • Jan Lemeire
  • Adrian Munteanu
Original Article


2D texture data represent one of the main data sources in 3D graphics, requiring large amounts of memory and bandwidth. Texture compression is of critical importance in this context to cope with these bottlenecks. To improve upon the available supported texture compression systems, several transform-based solutions have been proposed. These solutions, however, are not suitable for real-time texture sampling or provide insufficient image quality at medium to low rates. We propose a new scalable texture codec based on the 2D wavelet transform suitable for real-time rendering and filtering, using a new subband coding technique. The codec offers superior compression performance compared to the state-of-the-art, resolution scalability coupled with a wide variety of quality versus rate trade-offs as well as complexity scalability supported by the use of different wavelet filters.


Texture compression Texture mapping Wavelet transform Quantization 



The Kodim test images used in this paper are courtesy of KODAK [28]. This work was funded by the Agency for Innovation by Science and Technology in Flanders (IWT) through bursary SB-536, by the iMinds institute through the ICON project BAHAMAS and by the Research Foundation - Flanders (FWO).


  1. 1.
    Iourcha, K. I., Nayak, K. S., Hong, Z.: Fixed-rate block-based image compression with inferred pixel values. US Patent 6,658,146 (2003)Google Scholar
  2. 2.
    Microsoft, texture block compression in direct3D 11. Accessed 20 Jan 2016
  3. 3.
    Delp, E., Mitchell, O.: Image compression using block truncation coding. IEEE Trans. Commun. 27(9), 1335–1342 (1979)CrossRefGoogle Scholar
  4. 4.
    Nystad, J., Lassen, A., Pomianowski, A., Ellis, S., Olson, T.: Adaptive scalable texture compression. In: Dachsbacher, C., Munkberg, J., Pantaleoni, J. (eds.) High performance graphics, pp. 105–114, Eurographics Association (2012)Google Scholar
  5. 5.
    Beers, A. C., Agrawala, M., Chaddha, N.: Rendering from compressed textures. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, New York, pp. 373–378, ACM (1996)Google Scholar
  6. 6.
    Kilgard, M. J., Brown, P., Zhang, Y., Barsi, A.: LATC OpenGL extension.,2009. Accessed 20 Jan 2016
  7. 7.
    Pereberin, et al. A. V.: Hierarchical approach for texture compression. In: Proceedings of graphiCon n++99, pp. 195–199 (1999)Google Scholar
  8. 8.
    Fenney, S.: Texture compression using low-frequency signal modulation. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS ’03, (Aire-la-Ville, Switzerland), pp. 84–91, Eurographics Association (2003)Google Scholar
  9. 9.
    Diverdi, S., Candussi, N., Höllerer, T.: Real-Time Rendering with Wavelet-Compressed Multi-Dimensional Textures on the GPU. University of California, Santa Barbara (2005)Google Scholar
  10. 10.
    Sun, C.-H., Tsao, Y.-M., Chien, S.-Y.: High-quality mipmapping texture compression with alpha maps for graphics processing units. IEEE Trans. Multimed. 11(4), 589–599 (2009)CrossRefGoogle Scholar
  11. 11.
    Grund, N., Menzel, N., Klein, R.: High-quality wavelet compressed textures for real-time rendering. WSCG Short Pap. 18, 207–212 (2010)Google Scholar
  12. 12.
    Hollemeersch, C.-F., Pieters, B., Lambert, P., Van de Walle, R.: A new approach to combine texture compression and filtering. Vis. Comput. 28(4), 371–385 (2012)CrossRefGoogle Scholar
  13. 13.
    Mavridis, P., Papaioannou, G.: Texture Compression Using Wavelet Decomposition. In: Computer graphics forum, vol. 31, pp. 2107–2116, Wiley Online Library (2012)Google Scholar
  14. 14.
    Tenllado, C., Lario, R., Prieto, M., Tirado, F.: The 2d discrete wavelet transform on programmable graphics hardware. In: IASTED Visualization, Imaging and Image Processing Conference (2004)Google Scholar
  15. 15.
    Wong, T.-T., Leung, C.-S., Heng, P.-A., Wang, J.: Discrete wavelet transform on consumer-level graphics hardware. IEEE Trans. Multimed. 9(3), 668–673 (2007)CrossRefGoogle Scholar
  16. 16.
    Tenllado, C., Setoain, J., Prieto, M., Piñuel, L., Tirado, F.: Parallel implementation of the 2D discrete wavelet transform on graphics processing units: filter bank versus lifting. IEEE Trans. Parallel Distrib. Syst. 19(3), 299–310 (2008)CrossRefGoogle Scholar
  17. 17.
    van der Laan, W.J., Jalba, A.C., Roerdink, J.: Accelerating wavelet lifting on graphics hardware using CUDA. IEEE Trans. Parallel Distrib. Syst. 22(1), 132–146 (2011)CrossRefGoogle Scholar
  18. 18.
    Treib, M., Reichl, F., Auer, S., Westermann, R.: Interactive editing of gigasample terrain fields. In: Computer Graphics Forum, vol. 31, pp. 383–392, Wiley Online Library (2012)Google Scholar
  19. 19.
    Malvar, H., Sullivan, G.: YCoCg-R: a color space with RGB reversibility and low dynamic range. ISO/IEC JTC1/SC29/WG11 and ITU (2003)Google Scholar
  20. 20.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mallat, S.: A Wavelet Tour of Signal Processing Academic, Vol. 16. New York (1998)Google Scholar
  23. 23.
    Andries, B., Lemeire, J., Munteanu, A.: Optimized quantization of wavelet subbands for high quality real-time texture compression. In: IEEE International Conference on Image Processing 2014, Paris, France (2014)Google Scholar
  24. 24.
    Alecu, A., Munteanu, A., Schelkens, P., Cornelis, J., Dewitte, S.: Wavelet-based fixed and embedded L-infinite-constrained image coding. J. Electr. Imag. 12(3), 522–538 (2003)Google Scholar
  25. 25.
    Alecu, A., Munteanu, A., Cornelis, J., Schelkens, P.: Wavelet-based scalable L-infinity-oriented compression. IEEE Trans. Image Process. 15(9), 2499–2512 (2006)CrossRefGoogle Scholar
  26. 26.
    Nvidia Texture Tools. (2010). Accessed 20 Jan 2016
  27. 27.
    ASTC encoder. (2015). Accessed 20 Jan 2016
  28. 28.
    Kodak image set. Accessed 10 Aug 2015
  29. 29.
    Bjontegaard, G.: Calcuation of average PSNR differences between RD-curves. Doc. VCEG-M33 ITU-T Q6/16, Austin, 2–4 April (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ETROVrije Universiteit BrusselBrusselsBelgium
  2. 2.ETRO-INDIVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations