Physics-inspired controllable flame animation

Abstract

We propose a novel method conceptualized from the properties of physics where in particular the shape of a flame is determined by temperature that enables a control mechanism for the intuitive shaping of a flame. We focused on a trade-off issue from computer graphics whereby the turbulent flow that expresses the characteristics of the flame has a tendency to shift continuously, whereas the velocity constraints that contain a fluid within a target shape have a tendency to force movement in a particular direction. Trade-off made it difficult for animation designers to maintain a flame within the intended target shape. This paper resolves the issue by enabling the flame to be controlled without any velocity constraints by using the following two techniques: First, we model the temperature and force of the explosion generated by the combustion of explosive gaseous fuel and apply it to certain regions. Second, we expand the space of the interface between the fuel and the burned products, classifying that space into four regions and controlling the target shape of the flame by delicate adjustments to the temperature in each region. Experiments show that the flame maintains the appearance of dynamic movement while preserving the detailed 3D shapes specified by the scene designers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Bridson, R.: Fluid Simulation for Computer Graphics. A K Peters/CRC Press (2008). http://www.worldcat.org/isbn/1568813260

  2. 2.

    Fattal, R., Lischinski, D.: Target-driven smoke animation. ACM Trans. Graph. 23(3), 441–448 (2004). doi:10.1145/1015706.1015743

    Article  Google Scholar 

  3. 3.

    Feldman, B.E., O’Brien, J.F., Arikan, O.: Animating suspended particle explosions. ACM Trans. Graph. 22(3), 708–715 (2003). doi:10.1145/882262.882336

    Article  MATH  Google Scholar 

  4. 4.

    Foster, N., Metaxas, D.: Controlling fluid animation. In: Proceedings of the 1997 Conference on Computer Graphics International, IEEE Computer Society, CGI ’97, p. 178. Washington, DC, USA (1997). http://dl.acm.org/citation.cfm?id=792756.792862

  5. 5.

    Hong, J.M., Kim, C.H.: Controlling fluid animation with geometric potential. Comput. Animat. Virtual Worlds 15(3–4), 147–157 (2004). doi:10.1002/cav.v15:3/4

    Article  Google Scholar 

  6. 6.

    Hong, J.M., Kim, C.H.: Discontinuous fluids. ACM Trans. Graph. 24(3), 915–920 (2005). doi:10.1145/1073204.1073283

    Article  Google Scholar 

  7. 7.

    Hong, J.M., Shinar, T., Fedkiw, R.: Wrinkled flames and cellular patterns. ACM Trans. Graph. 26(3) 47:1–47:6 (2007). doi:10.1145/1276377.1276436

  8. 8.

    Hong, Y., Zhu, D., Qiu, X., Wang, Z.: Geometry-based control of fire simulation. Vis. Comput. 26(9), 1217–1228 (2010). doi:10.1007/s00371-009-0403-8

    Article  Google Scholar 

  9. 9.

    Horvath, C., Geiger, W.: Directable, high-resolution simulation of fire on the gpu. ACM Trans. Graph. 28(3), 41:1–41:8 (2009). doi:10.1145/1531326.1531347

    Article  Google Scholar 

  10. 10.

    Jeong, S., Kim, C.H.: Combustion waves on the point set surface. Comput. Graph. Forum 32(7), 225–234 (2013)

  11. 11.

    Kang, M., Fedkiw, R.P., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15(3), 323–360 (2000). doi:10.1023/A:1011178417620

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Kawada, G., Kanai, T.: Procedural fluid modeling of explosion phenomena based on physical properties. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’11, pp. 167–176. ACM, New York, NY, USA (2011). doi:10.1145/2019406.2019429

  13. 13.

    Kim, Y., Machiraju, R., Thompson, D.: Path-based control of smoke simulations. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’06, pp. 33–42. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2006). http://dl.acm.org/citation.cfm?id=1218064.1218069

  14. 14.

    Nguyen, D.Q., Fedkiw, R., Jensen, H.W.: Physically based modeling and animation of fire. ACM Trans. Graph. 21(3), 721–728 (2002). doi:10.1145/566654.566643

    Article  Google Scholar 

  15. 15.

    Raveendran, K., Thuerey, N., Wojtan, C., Turk, G.: Controlling liquids using meshes. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’12, pp. 255–264. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2012). http://dl.acm.org/citation.cfm?id=2422356.2422393

  16. 16.

    Ross, G.: The Hunger Games. Lions Gate Films (2012)

  17. 17.

    Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24(3), 910–914 (2005). doi:10.1145/1073204.1073282

    Article  Google Scholar 

  18. 18.

    Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (1999). http://books.google.co.kr/books?id=ErpOoynE4dIC

  19. 19.

    Shi, L., Yu, Y.: Controllable smoke animation with guiding objects. ACM Trans. Graph. 24(1), 140–164 (2005). doi:10.1145/1037957.1037965

    MathSciNet  Article  Google Scholar 

  20. 20.

    Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’05, pp. 229–236. ACM, New York, NY, USA (2005). doi:10.1145/1073368.1073401

  21. 21.

    Shin, S.H., Kim, C.H.: Target-driven liquid animation with interfacial discontinuities. Comput. Animat. Virtual Worlds 18(4–5), 447–453 (2007)

  22. 22.

    Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999). doi:10.1145/311535.311548

  23. 23.

    Thürey, N., Keiser, R., Pauly, M., Rüde, U.: Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’06, pp. 7–12. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2006). http://dl.acm.org/citation.cfm?id=1218064.1218066

  24. 24.

    Yang, B., Liu, Y., You, L., Jin, X.: A unified smoke control method based on signed distance field. Comput. Graph. 37(7), 775–786 (2013). doi:10.1016/j.cag.2013.05.001. http://www.sciencedirect.com/science/article/pii/S0097849313000757

  25. 25.

    Yngve, G.D., O’Brien, J.F., Hodgins, J.K.: Animating explosions. In: Proceedings of ACM SIGGRAPH 2000, pp. 29–36 (2000). http://graphics.cs.berkeley.edu/papers/Yngve-AEX-2000-07/

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2011602, NRF-2014R1A2A2A01007143, NRF-2015R1A1A1A05001196, NRF-2015R1C1A2A01053543) and the Technological Innovation R&D Program (S2172401) funded by the Small and Medium Business Administration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Hun Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 23348 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Lee, J. & Kim, CH. Physics-inspired controllable flame animation. Vis Comput 32, 871–880 (2016). https://doi.org/10.1007/s00371-016-1267-3

Download citation

Keywords

  • Flame animation
  • Physics inspired
  • Temperature control
  • Fluid control