The Visual Computer

, Volume 32, Issue 6–8, pp 847–857 | Cite as

ITEA—interactive trajectories and events analysis: exploring sequences of spatio-temporal events in movement data

  • Lena Cibulski
  • Denis Gračanin
  • Alexandra Diehl
  • Rainer Splechtna
  • Mai Elshehaly
  • Claudio Delrieux
  • Krešimir Matković
Original Article

Abstract

Widespread use of GPS and similar technologies makes it possible to collect extensive amounts of trajectory data. These data sets are essential for reasonable decision making in various application domains. Additional information, such as events taking place along a trajectory, makes data analysis challenging, due to data size and complexity. We present an integrated solution for interactive visual analysis and exploration of events along trajectories data. Our approach supports analysis of event sequences at three different levels of abstraction, namely spatial, temporal, and events themselves. Customized views as well as standard views are combined to form a coordinated multiple views system. In addition to trajectories and events, we include on-the-fly derived data in the analysis. We evaluate our integrated solution using the IEEE VAST 2015 Challenge data set. A successful detection and characterization of malicious activity indicate the usefulness and efficiency of the presented approach.

Keywords

Interactive visual analysis Movement data Spatio-temporal data Coordinated multiple views  

References

  1. 1.
    Albers, D., Dewey, C., Gleicher, M.: Sequence surveyor: leveraging overview for scalable genomic alignment visualization. IEEE TVCG 17(12), 2392–2401 (2011)Google Scholar
  2. 2.
    Andrews, C., Billingsy, J.: Middguard at DinoFun World. VAST Challenge 2015 Entry (2015)Google Scholar
  3. 3.
    Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual analytics of movement. Springer (2013)Google Scholar
  4. 4.
    Buchmuller, J., Fischer, F., Streeb, D., Keim, D.A.: Using visual analytics to provide situation awareness for movement and communication data. In: Proceedings of the 2015 IEEE VAST, pp. 121–122 (2015)Google Scholar
  5. 5.
    Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data: a study of New York City taxi trips. IEEE TVCG 19(12), 2149–2158 (2013)Google Scholar
  6. 6.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J 20(5), (2011)Google Scholar
  7. 7.
    Gotz, D., Stavropoulos, H.: DecisionFlow: visual analytics for high-dimensional temporal event sequence data. IEEE TVCG 20(12), 1783–1792 (2014)Google Scholar
  8. 8.
    Guo, H., Wang, Z., Yu, B., Zhao, H., Yuan, X.: TripVista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: 2011 IEEE PacificVis, pp. 163–170 (2011)Google Scholar
  9. 9.
    Konyha, Z., Matković, K., Gračanin, D., Jelović, M., Hauser, H.: Interactive visual analysis of families of function graphs. IEEE TVCG 12(6), 1373–1385 (2006)Google Scholar
  10. 10.
    Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)CrossRefGoogle Scholar
  11. 11.
    Malik, S., Du, F., Monroe, M., Onukwugha, E., Plaisant, C., Shneiderman, B.: Cohort comparison of event sequences with balanced integration of visual analytics and statistics. In: Proceedings of the 20th international conference on intelligent user interfaces, IUI ’15, pp. 38–49. ACM, New York (2015)Google Scholar
  12. 12.
    Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)CrossRefGoogle Scholar
  13. 13.
    Matkovic, K., Gracanin, D., Konyha, Z., Hauser, H.: ColorLines view: an approach to visualization of families of function graphs. In: 11th International Conference on Information Visualisation, IV 2007, pp. 59–64 (2007)Google Scholar
  14. 14.
    Monroe, M., Lan, R., Lee, H., Plaisant, C., Shneiderman, B.: Temporal event sequence simplification. IEEE TVCG 19(12), 2227–2236 (2013)Google Scholar
  15. 15.
    Orellana, D., Bregt, A.K., Ligtenberg, A., Wachowicz, M.: Exploring visitor movement patterns in natural recreational areas. Tour. Manag. 33(3), 672–682 (2012)CrossRefGoogle Scholar
  16. 16.
    Patnaik, D., Butler, P., Ramakrishnan, N., Parida, L., Keller, B.J., Hanauer, D.A.: Experiences with mining temporal event sequences from electronic medical records: initial successes and some challenges. In: Proceedings of the 17th ACM SIGKDD. KDD ’11, pp. 360–368. ACM, New York (2011)Google Scholar
  17. 17.
    Steptoe, M., Krueger, R., Zhang, Y., Liang, X., Garcia, R., Kadambi, S., Luo, W., Ertl, T., Maciejewski, R.: VAST challenge 2015: grand challenge–team VADER/VIS award for outstanding comprehensive submission. In: Proceedings of the 2015 IEEE VAST, pp. 119–120 (2015)Google Scholar
  18. 18.
    Whiting, M., Cook, K., Grinstein, G., Fallon, J., Liggett, K., Staheli, D., Crouser, J.: VAST challenge 2015: Mayhem at Dinofun World. In: Proceedings of the 2015 IEEE VAST, pp. 113–118 (2015)Google Scholar
  19. 19.
    Wongsuphasawat, K.: Guerra Gómez, J.A., Plaisant, C., Wang, T.D., Taieb-Maimon, M., Shneiderman, B.: LifeFlow: visualizing an overview of event sequences. In: Proceedings of the SIGCHI conference on human factors in computing systems. CHI ’11, pp. 1747–1756. ACM, New York (2011)Google Scholar
  20. 20.
    Xu, J., Ren, S., Tao, Y., Lin, H.: A collaborative visual analysis system for communication pattern discovery. In: Proceedings of the 2015 IEEE VAST, pp. 139–140 (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lena Cibulski
    • 1
    • 2
  • Denis Gračanin
    • 3
  • Alexandra Diehl
    • 4
  • Rainer Splechtna
    • 1
  • Mai Elshehaly
    • 5
  • Claudio Delrieux
    • 6
  • Krešimir Matković
    • 1
  1. 1.VRVis Research CenterViennaAustria
  2. 2.University of MagdeburgMagdeburgGermany
  3. 3.Virginia TechBlacksburgUSA
  4. 4.University of Buenos AiresBuenos AiresArgentina
  5. 5.University of MarylandBaltimoreUSA
  6. 6.University of the SouthBahía BlancaArgentina

Personalised recommendations