Skip to main content
Log in

Adaptive transfer functions

Improved multiresolution visualization of medical models

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript


Medical datasets are continuously increasing in size. Although larger models may be available for certain research purposes, in the common clinical practice the models are usually of up to \(512 \times 512 \times 2000\) voxels. These resolutions exceed the capabilities of conventional GPUs, the ones usually found in the medical doctors’ desktop PCs. Commercial solutions typically reduce the data by downsampling the dataset iteratively until it fits the available target specifications. The data loss reduces the visualization quality and this is not commonly compensated with other actions that might alleviate its effects. In this paper, we propose adaptive transfer functions, an algorithm that improves the transfer function in downsampled multiresolution models so that the quality of renderings is highly improved. The technique is simple and lightweight, and it is suitable, not only to visualize huge models that would not fit in a GPU, but also to render not-so-large models in mobile GPUs, which are less capable than their desktop counterparts. Moreover, it can also be used to accelerate rendering frame rates using lower levels of the multiresolution hierarchy while still maintaining high-quality results in a focus and context approach. We also show an evaluation of these results based on perceptual metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others


  1. Balsa Rodríguez, M., Gobbetti, E., Iglesias Guitián, J.A., Makhinya, M., Marton, F., Pajarola, R., Suter, S.: State-of-the-art in compressed GPU-based direct volume rendering. Comput. Graph. Forum 33(6), 77–100 (2014)

    Article  Google Scholar 

  2. Bergner, S., Möller, T., Weiskopf, D., Muraki, D.J.: A spectral analysis of function composition and its implications for sampling in direct volume visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1353–1360 (2006)

    Article  Google Scholar 

  3. Beyer, J., Hadwiger, M., Möller, T., Fritz, L.: Smooth mixed-resolution gpu volume rendering. In: Proceedings of the Fifth Eurographics/IEEE VGTC conference on Point-Based Graphics, pp. 163–170. Eurographics Association, Los Angeles, CA, USA (2008)

  4. Beyer, J., Hadwiger, M., Pfister, H.: A survey of GPU-based large-scale volume visualization. In: Proceedings EuroVis 2014 (2014)

  5. Boada, I., Navazo, I., Scopigno, R.: Multiresolution volume visualization with a texture-based octree. Vis. Comput. 17(3), 185–197 (2001)

    Article  MATH  Google Scholar 

  6. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D’09), pp. 15–22. ACM, New York (2009)

  7. Fisher, M., Dorgham, O., Laycock, S.D.: Fast reconstructed radiographs from octree-compressed volumetric data. Int. J. Comput. Assist. Radiol. Surg. 8(2), 313–322 (2013)

    Article  Google Scholar 

  8. Fogal, T., Schiewe, A., Krüger, J.: An analysis of scalable GPU-based ray-guided volume rendering. In: 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), pp. 43–51. IEEE (2013)

  9. Gobbetti, E., Iglesias Guitián, J., Marton, F.: A compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput. Graph. Forum 31(3pt4), 1315–1324 (2012). (Proc. EuroVis 2012)

    Article  Google Scholar 

  10. Gobbetti, E., Marton, F., Iglesias Guitián, J.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. Vis. Comput. 24(7–9), 797–806 (2008). (Proc. CGI 2008)

    Article  Google Scholar 

  11. Guthe, S., Straßer, W.: Advanced techniques for high-quality multi-resolution volume rendering. Comput. Graph. 28(1), 51–58 (2004)

    Article  Google Scholar 

  12. Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D., Engel, K.: Real-Time Volume Graphics. A. K. Peters Ltd, Natick (2006)

    Google Scholar 

  13. Jankun-Kelly, T., Ma, K.L.: A study of transfer function generation for time-varying volume data. In: Proceedings of the 2001 Eurographics conference on Volume Graphics, pp. 51–66. Eurographics Association, New York, USA (2001)

  14. Kitware, Inc.: VES, the VTK OpenGL ES rendering toolkit (2014)

  15. Knoll, A., Thelen, S., Wald, I., Hansen, C.D., Hagen, H., Papka, M.E.: Full-resolution interactive cpu volume rendering with coherent bvh traversal. In: Proc. IEEE Pacific Visualization Symposium, pp. 3–10. IEEE Computer Society, Washington, DC (2011)

  16. Knoll, A.M., Wald, I., Hansen, C.D.: Coherent multiresolution isosurface ray tracing. Vis. Comput. 25(3), 209–225 (2009)

    Article  Google Scholar 

  17. Kraus, M., Bürger, K.: Interpolating and downsampling RGBA volume data. In: Proceedings of Vision, Modeling, and Visualization’08, pp. 323–332 (2008)

  18. LaMar, E., Hamann, B., Joy, K.I.: Multiresolution techniques for interactive texture-based volume visualization. In: Proceedings of the Conference on Visualization’99: Celebrating Ten Years, VIS’99, pp. 355–361. IEEE Computer Society Press: Los Alamitos (1999)

  19. Ljung, P., Lundstrom, C., Ynnerman, A., Museth, K.: Transfer function based adaptive decompression for volume rendering of large medical data sets. In: Proceedings of the 2004 IEEE Symposium on Volume Visualization and Graphics, VV’04, pp. 25–32. IEEE Computer Society, Washington, DC (2004)

  20. Martin, S., Shen, H.W.: Interactive transfer function design on large multiresolution volumes. In: 2012 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 19–22. IEEE (2012)

  21. Mobeen, M.M., Feng, L.: Ubiquitous medical volume rendering on mobile devices. In: International Conference on Information Society, pp. 93–98. IEEE (2012)

  22. Moser, M., Weiskopf, D.: Interactive volume rendering on mobile devices. In: In Vision, Modeling, and Visualization VMV 2008 Conference Proceedings, pp. 217–226 (2008)

  23. OsiriX Imaging Software: OsiriX HD (2014)

  24. Raster Images: Oviyam—Web DICOM browser (2014)

  25. Ruiz, M., Bardera, A., Boada, I., Viola, I., Feixas, M., Sbert, M.: Automatic transfer functions based on informational divergence. IEEE Trans. Vis. Comput. Graph. 17(12), 1932–1941 (2011)

    Article  Google Scholar 

  26. Šereda, P., Vilanova, A., Gerritsen, F.A.: Automating transfer function design for volume rendering using hierarchical clustering of material boundaries. In: Proc. of Eurographics/IEEE VGTC Conference on Visualization, pp. 243–250. Eurographics Association, Lisbon, Portugal (2006)

  27. Sicat, R., Hadwiger, M., Krüger, J., Möller, T.: Sparse PDF volumes for consistent multi-resolution volume rendering. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Vis.) 20(12), 2417–2426 (2014)

    Article  Google Scholar 

  28. Sousa, R., Nisi, V., Oakley, I.: Glaze: A visualization framework for mobile devices. In: Human–Computer Interaction–INTERACT, pp. 870–873. Springer, New York (2009)

  29. Thelen, S., Meyer, J., Ebert, A., Hagen, H.: Giga-scale multiresolution volume rendering on distributed display clusters. In: Human Aspects of Visualization, pp. 142–162. Springer, New York (2011)

  30. Wang, C., Gao, J., Li, L., Shen, H.W.: A multiresolution volume rendering framework for large-scale time-varying data visualization. In: Proceedings of the Fourth Eurographics/IEEE VGTC Conference on Volume Graphics, pp. 11–19. Eurographics Association, New York, USA (2005)

  31. Wang, Y.S., Wang, C., Lee, T.Y., Ma, K.L.: Feature-preserving volume data reduction and focus \(+\) context visualization. IEEE Trans. Vis. Comput. Graph. 17(2), 171–181 (2011)

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Weiler, M., Westermann, R., Hansen, C., Zimmermann, K., Ertl, T.: Level-of-detail volume rendering via 3D textures. In: Proceedings of the 2000 IEEE Symposium on Volume Visualization, VVS’00, pp. 7–13. ACM, New York (2000)

  34. Xu, X., Sakhaee, E., Entezari, A.: Volumetric data reduction in a compressed sensing framework. Comput. Graph. Forum 33(3), 111–120 (2014)

    Article  Google Scholar 

  35. Younesy, H., Möller, T., Carr, H.: Improving the quality of multi-resolution volume rendering. In: Proc. Joint Eurographics/IEEE VGTC Conference on Visualization, pp. 251–258. Eurographics Association, Lisboa, Portugal (2006)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jesús Díaz-García.

Additional information

Thanks to project TIN2014-52211-C2-1-R of the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund and Alma IT Systems, for supporting J. Díaz-García’s Ph.D. thesis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 25284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-García, J., Brunet, P., Navazo, I. et al. Adaptive transfer functions. Vis Comput 32, 835–845 (2016).

Download citation

  • Published:

  • Issue Date:

  • DOI: