The Visual Computer

, Volume 32, Issue 6–8, pp 761–770 | Cite as

Examining the effect of body ownership in immersive virtual and augmented reality environments

  • Filip ŠkolaEmail author
  • Fotis Liarokapis
Original Article


The traditional rubber hand illusion is a psychological experiment where participants are under the illusion that a rubber hand is part of their own body. This paper examines the use of real, virtual and augmented reality environments for identifying the elements that influence body ownership in healthy participants. Compared to the classical experiment where a plastic rubber hand was used, a realistic 3D representation was chosen to create the same illusion this time in both immersive virtual reality and augmented reality. Experiments were performed on 30 volunteers undergoing testing session composed of three stages. Participants were asked to complete two different questionnaires, one measuring their cognitive workload and another one regarding their experience with the rubber hand illusion. In addition, EEG signals of the individuals were recorded, resulting in 90 electroencephalogram datasets. Results indicate correlations between ownership statements with beta and gamma electroencephalogram bands in premotor cortex activity. Link between higher gamma production in ventral premotor area during the illusion was established in previous studies.


Human factors Computer graphics Virtual reality Augmented reality 



We would like to thank Dr. Helena Lukášová for providing her hand as a model and for artwork done on its printed version, and Igor Chalás for his work on the 3D visualization of the hand. Also thanks to Szymon Fiałek for valuable contributions to the experimental design and Dr. Jiří Chmelík for helping with the preparations of the experiment.


  1. 1.
    Artoolkit. Accessed 11 Dec 2015 (2015)
  2. 2.
    Create and connect with unity 5. Accessed 11 Dec 2015 (2015)
  3. 3.
    Fortus 250mc. Accessed 11 Dec 2015 (2015)
  4. 4.
    Mara plug-in for eeglab. Accessed 11 Dec 2015 (2015)
  5. 5.
    Mirror: medical imaging software. Accessed 11 Dec 2015 (2015)
  6. 6.
    Products/enobio/enobio 32-neuroelectrics. Accessed 11 Dec 2015 (2015)
  7. 7.
    The wrap 1200dxar—the ultimate digital ar eyewear solution. Accessed 30 Nov 2015 (2015)
  8. 8.
    Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001)CrossRefGoogle Scholar
  9. 9.
    Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., Başar, E.: Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int. J. Psychophysiol. 24(1), 101–112 (1996)CrossRefGoogle Scholar
  10. 10.
    Botvinick, M., Cohen, J., et al.: Rubber hands’ feel’touch that eyes see. Nature 391(6669), 756–756 (1998)CrossRefGoogle Scholar
  11. 11.
    Brovelli, A., Lachaux, J.P., Kahane, P., Boussaoud, D.: High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. Neuroimage 28(1), 154–164 (2005)CrossRefGoogle Scholar
  12. 12.
    Costantini, M., Haggard, P.: The rubber hand illusion: sensitivity and reference frame for body ownership. Conscious. Cognit. 16(2), 229–240 (2007)CrossRefGoogle Scholar
  13. 13.
    Delorme, A., Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  14. 14.
    Ehrsson, H.H.: The experimental induction of out-of-body experiences. Science 317(5841), 1048–1048 (2007)CrossRefGoogle Scholar
  15. 15.
    Ehrsson, H.H., Holmes, N.P., Passingham, R.E.: Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25(45), 10564–10573 (2005)CrossRefGoogle Scholar
  16. 16.
    Ehrsson, H.H., Spence, C., Passingham, R.E.: That’s my hand! activity in premotor cortex reflects feeling of ownership of a limb. Science 305(5685), 875–877 (2004)CrossRefGoogle Scholar
  17. 17.
    Fernández, T., Harmony, T., Rodríguez, M., Bernal, J., Silva, J., Reyes, A., Marosi, E.: EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalogr. Clin. Neurophysiol. 94(3), 175–182 (1995)CrossRefGoogle Scholar
  18. 18.
    Fitzgibbon, S.P., Pope, K.J., Mackenzie, L., Clark, C.R., Willoughby, J.O.: Cognitive tasks augment gamma EEG power. Clin. Neurophysiol. 115(8), 1802–1809 (2004)CrossRefGoogle Scholar
  19. 19.
    Gallagher, S.: Body image and body schema: a conceptual clarification. J. Mind Behav. 7(4), 5417,554 (1986)Google Scholar
  20. 20.
    Graimann, B., Allison, B.Z., Pfurtscheller, G.: Brain–Computer Interfaces: Revolutionizing Human–Computer Interaction. Springer Science & Business Media, Berlin (2010)CrossRefGoogle Scholar
  21. 21.
    Gray, C.M.: The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24(1), 31–47 (1999)CrossRefGoogle Scholar
  22. 22.
    Hart, S.G.: Nasa-task load index (nasa-tlx); 20 years later. In: Proceedings of the human factors and ergonomics society annual meeting, vol. 50, Sage Publications, pp. 904–908 (2006)Google Scholar
  23. 23.
    IJsselsteijn, W., de Kort, Y., Haans, A., et al.: Is this my hand i see before me? the rubber hand illusion in reality, virtual reality, and mixed reality. Presence 15(4), 455–464 (2006)CrossRefGoogle Scholar
  24. 24.
    Kalckert, A., Ehrsson, H.H.: Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6(40), 1–14 (2012)Google Scholar
  25. 25.
    Kalckert, A., Ehrsson, H.H.: The moving rubber hand illusion revisited: comparing movements and visuotactile stimulation to induce illusory ownership. Conscious. Cognit. 26, 117–132 (2014)CrossRefGoogle Scholar
  26. 26.
    Kammers, M., Van der Ham, I., Dijkerman, H.: Dissociating body representations in healthy individuals: differential effects of a kinaesthetic illusion on perception and action. Neuropsychologia 44(12), 2430–2436 (2006)CrossRefGoogle Scholar
  27. 27.
    Kilteni, K., Maselli, A., Kording, K.P., Slater, M.: Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Front. Hum. Neurosci. 9, 1–20 (2015)Google Scholar
  28. 28.
    Lenggenhager, B., Tadi, T., Metzinger, T., Blanke, O.: Video ergo sum: manipulating bodily self-consciousness. Science 317(5841), 1096–1099 (2007)CrossRefGoogle Scholar
  29. 29.
    Maravita, A., Spence, C., Driver, J.: Multisensory integration and the body schema: close to hand and within reach. Curr. Biol. 13(13), R531–R539 (2003)CrossRefGoogle Scholar
  30. 30.
    Martin, J.H.: The collective electrical behavior of cortical neurons: the electroencephalogram and the mechanisms of epilepsy. Princ. Neural Sci. 3, 777–791 (1991)Google Scholar
  31. 31.
    Merleau-Ponty, M.: Phenomenology of Perception (1962)Google Scholar
  32. 32.
    Petkova, V.I., Ehrsson, H.H.: If i were you: perceptual illusion of body swapping. PLoS ONE 3(12), e3832 (2008)CrossRefGoogle Scholar
  33. 33.
    Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)CrossRefGoogle Scholar
  34. 34.
    Pulvermüller, F., Birbaumer, N., Lutzenberger, W., Mohr, B.: High-frequency brain activity: its possible role in attention, perception and language processing. Prog. Neurobiol. 52(5), 427–445 (1997)CrossRefGoogle Scholar
  35. 35.
    Ramachandran, V.S., Rogers-Ramachandran, D.: Synaesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. B Biol. Sci. 263(1369), 377–386 (1996)CrossRefGoogle Scholar
  36. 36.
    Ray, W.J., Cole, H.W.: Eeg alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228(4700), 750–752 (1985)CrossRefGoogle Scholar
  37. 37.
    Ron-Angevin, R., Díaz-Estrella, A.: Brain-computer interface: changes in performance using virtual reality techniques. Neurosci. Lett. 449(2), 123–127 (2009)CrossRefGoogle Scholar
  38. 38.
    Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, New York (2013)Google Scholar
  39. 39.
    Slater, M., Spanlang, B., Sanchez-Vives, M.V., Blanke, O., et al.: First person experience of body transfer in virtual reality. PLoS ONE 5(5), e10564 (2010)CrossRefGoogle Scholar
  40. 40.
    Sollfrank, T., Hart, D., Goodsell, R., Foster, J., Tan, T.: 3d visualization of movements can amplify motor cortex activation during subsequent motor imagery. Front. Hum. Neurosci. 9, 1–9 (2015)Google Scholar
  41. 41.
    Suzuki, K., Garfinkel, S.N., Critchley, H.D., Seth, A.K.: Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia 51(13), 2909–2917 (2013)Google Scholar
  42. 42.
    Tan, D.: Brain–computer interfaces: applying our minds to human–computer interaction. Informal proceedings what is the next generation of human-computer interaction? In: Workshop at CHI 2006 (2006)Google Scholar
  43. 43.
    Tsakiris, M., Haggard, P.: The rubber hand illusion revisited: visuotactile integration and self-attribution. J. Exp. Psychol. Hum. Percept. Perform. 31(1), 80 (2005)CrossRefGoogle Scholar
  44. 44.
    Zhang, J., Ma, K., Hommel, B.: The virtual hand illusion is moderated by context-induced spatial reference frames. Front. Psychol. 6, 1–9 (2015)Google Scholar
  45. 45.
    Zhang, Y., Chen, Y., Bressler, S.L., Ding, M.: Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 156(1), 238–246 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.HCI Lab, Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations