The Visual Computer

, Volume 33, Issue 10, pp 1335–1346 | Cite as

A time-integration method for stable simulation of extremely deformable hyperelastic objects

Original Article

Abstract

This paper presents a time integration method for realtime simulation of extremely deformable objects subject to geometrically nonlinear hyperelasticity. In the presented method, the equation of motion of the system is discretized by the backward Euler method, and linearly approximated through the first-order Taylor expansion. The approximate linear equation is solved with the quasi-minimal residual method (QMR), which is an iterative linear equation solver for non-symmetric or indefinite matrices. The solution is then corrected considering the nonlinear term that is omitted at the Taylor expansion. The method does not demand the constitutive law to guarantee the positive definiteness of the stiffness matrix. Experimental results show that the presented method realizes stable behavior of the simulated model under such deformation that the tetrahedral elements are almost flattened. It is also shown that QMR outperforms the biconjugate gradient stabilized method (BiCGStab) in this application.

Keywords

QMR Finite elements Interactive simulation Hyperelasticity 

Supplementary material

Supplementary material 1 (wmv 51884 KB)

References

  1. 1.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH, pp. 43–54 (1998)Google Scholar
  2. 2.
    Barbič, J.: Exact corotational linear FEM stiffness matrix. Tech. Rep. University of Southern California (2012)Google Scholar
  3. 3.
    Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24(3), 982–990 (2005)CrossRefGoogle Scholar
  4. 4.
    Barbič, J., Zhao, Y.: Real-time large-deformation substructuring. ACM Trans. Graph. (2011)Google Scholar
  5. 5.
    Bickel, B., Wicke, M., Gross, M.: Adaptive simulation of electrical discharges. In: Proceedings of Vision, Modeling, and Visualization, pp. 209–216 (2006)Google Scholar
  6. 6.
    Bouaziz, S., Martin, S., Li, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4), 154 (2014)CrossRefGoogle Scholar
  7. 7.
    Brochu, T., Keeler, T., Bridson, R.: Linear-time smoke animation with vortex sheet meshes. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 87–95 (2012)Google Scholar
  8. 8.
    Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. ACM Trans. Graph. 29(4), 38 (2010)CrossRefGoogle Scholar
  9. 9.
    Civit-Flores, O., Susín, A.: Robust treatment of degenerate elements in interactive corotational FEM simulations. Comput. Graph. Forum 33(6), 298–309 (2014)CrossRefGoogle Scholar
  10. 10.
    Delingette, H.: Biquadratic and quadratic springs for modeling St.Venant Kirchhoff materials. In: Proceedings of 4th International Symposium on Biomedical Simulation. Lecture Notes in Computer Science, vol. 5104, pp. 40–48. Springer, New York (2008)Google Scholar
  11. 11.
    Desbrun, M., Schröder, P., Barr, A.H.: Interactive animation of structured deformable objects. In: Proceedings of the 1999 Conference on Graphics Interface, pp. 1–8 (1999)Google Scholar
  12. 12.
    Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Dold, A., Eckmann, B. (eds.) Numerical Analysis. Lecture Notes in Mathematics, vol. 506, pp. 73–89. Springer, New York (1976)Google Scholar
  13. 13.
    Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear system. Numer. Math. 60(1), 315–339 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Freund, R.W., Nachtigal, N.M.: An implementation of the QMR method based on coupled two-term recurrences. SIAM J. Sci. Comput. 15(2), 313–337 (1994)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hirota, K., Kaneko, T.: Haptic representation of elastic objects. Presence 10(5), 525–536 (2001)CrossRefGoogle Scholar
  16. 16.
    Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 131–140 (2004)Google Scholar
  17. 17.
    Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68(2), 66–89 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Kapre, N., DeHon, A.: Optimistic parallelization of floating-point accumulation. In: Proceedings of 18th IEEE Symposium on Computer Arithmetic, pp. 205–216 (2007)Google Scholar
  19. 19.
    Kikuuwe, R., Tabuchi, H., Yamamoto, M.: An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements. ACM Trans. Graph. 28(1), 8 (2009)CrossRefGoogle Scholar
  20. 20.
    Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. 32(6), 214 (2013)Google Scholar
  21. 21.
    Lloyd, B.A., Székely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Trans. Visual Comput. Graph. 13(5), 1081–1094 (2007)CrossRefGoogle Scholar
  22. 22.
    McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., Sifakis, E.: Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30(4), 37 (2011) (article 37)Google Scholar
  23. 23.
    Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface, pp. 239–246 (2004)Google Scholar
  24. 24.
    Myronenko, A., Song, X.: On the closed-form solution of the rotation matrix arising in computer vision problems (2009). arXiv:0904.1613
  25. 25.
    Nakao, M., Kuroda, T., Oyama, H., Sakaguchi, G., Komeda, M.: Physics-based simulation of surgical fields for preoperative strategic planning. J. Med. Syst. 30(5), 371–380 (2006)CrossRefGoogle Scholar
  26. 26.
    Natsupakpong, S., Çavuşoğlu, M.C.: Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects. Graph. Models 72(6), 61–73 (2010)CrossRefGoogle Scholar
  27. 27.
    Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Eurographics, short presentations, pp. 77–80 (2005)Google Scholar
  28. 28.
    Nienhuys, H.W., van der Stappen, F.A.: Combining finite element deformation with cutting for surgery simulations. In: Proceedings of Eurographics, pp. 43–52 (2000)Google Scholar
  29. 29.
    Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)Google Scholar
  30. 30.
    Parker, E.G., O’Brien, J.F.: Real-time deformation and fracture in a game environment. In: Proceedings of 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 165–175 (2009)Google Scholar
  31. 31.
    Patterson, T., Mitchell, N., Sifakis, E.: Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Trans. Graph. 31(6), 197 (2012)CrossRefGoogle Scholar
  32. 32.
    Peterlík, I., Sedef, M., Basdogan, C., Matyska, L.: Real-time visio-haptic interaction with static soft tissue models having geometric and material nonlinearity. Comput. Graph. 34(1), 43–54 (2010)CrossRefGoogle Scholar
  33. 33.
    Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models 65(5), 305–321 (2003)CrossRefMATHGoogle Scholar
  34. 34.
    Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM (2003)Google Scholar
  35. 35.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Saupin, G., Duriez, C., Cotin, S., Grisoni, L.: Efficient contact modeling using compliance warping. In: Proceedings of Computer Graphics International (2008)Google Scholar
  37. 37.
    Schmedding, R., Teschner, M.: Inversion handling for stable deformable modeling. Visual Comput. 24(7–9), 625–633 (2008)CrossRefGoogle Scholar
  38. 38.
    Sin, F.S., Schroeder, D., Barbič, J.: Vega: Non-linear FEM deformable object simulator. Comput. Graph. Forum 32(1), 36–48 (2013)CrossRefGoogle Scholar
  39. 39.
    Song, C., Zhang, H., Wang, X., Han, J., Wang, H.: Fast corotational simulation for example-driven deformation. Comput. Graph. 40, 49–57 (2014)CrossRefGoogle Scholar
  40. 40.
    Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10(1), 36–52 (1989)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32 (2012)Google Scholar
  42. 42.
    Teran, J., Sifakis, E., Irving, G., Fedkiw, R.: Robust quasistatic finite elements and flesh simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 181–190 (2005)Google Scholar
  43. 43.
    van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput. 13(2), 631–644 (1992)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Wang, H.: A Chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. 34(6), 246 (2015)Google Scholar
  45. 45.
    Zhong, H., Wachowiak, M.P., Peters, T.M.: A real time finite element based tissue simulation method incorporating nonlinear elastic behavior. Comput. Methods Biomech. Biomed. Eng. 8(3), 177–189 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineringKyushu UniversityFukuokaJapan

Personalised recommendations