Advertisement

The Visual Computer

, Volume 33, Issue 3, pp 317–329 | Cite as

Joint-scale LBP: a new feature descriptor for texture classification

  • Xiaosheng Wu
  • Junding SunEmail author
Original Article

Abstract

This paper presents a simple, efficient, yet robust approach, named joint-scale local binary pattern (JLBP), for texture classification. In the proposed approach, the joint-scale strategy is developed firstly, and the neighborhoods of different scales are fused together by a simple arithmetic operation. And then, the descriptor is extracted from the mutual integration of the local patches based on the conventional local binary pattern (LBP). The proposed scheme can not only describe the micro-textures of a local structure, but also the macro-textures of a larger area because of the joint of multiple scales. Further, motivated by the completed local binary pattern (CLBP) scheme, the completed JLBP (CJLBP) is presented to enhance its power. The proposed descriptor is evaluated in relation to other recent LBP-based patterns and non-LBP methods on popular benchmark texture databases, Outex, CURet and UIUC. Generally, the experimental results show that the new method performs better than the state-of-the-art techniques.

Keywords

Texture classification Local binary pattern (LBP) Joint-scale local binary pattern (JLBP)  Complete JLBP (CJLBP) 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that we refer to in this paper. We would also like to thank Dr. Guo and Dr. Zhao as well as the MVG group for sharing their codes. This work is sponsored by the NSFC (No. 61572173) and the basic and advanced technology research project of Henan Province (Nos. 132300410462, 112300410281), the research team of HPU (No. T2014-3).

References

  1. 1.
    Brahnam, S., Jain, L.C., Nanni, L., Lumini, A.: Local binary patterns: new variants and applications. Springer, NY (2014)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, J., Kellokumpu, V., Zhao, G., Pietikäinen, M.: Rlbp: Robust local binary pattern. In: Proc. the British Machine Vision Conference (BMVC 2013), Bristol, UK (2013)Google Scholar
  3. 3.
    Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)CrossRefGoogle Scholar
  4. 4.
    Davarzani, R., Mozaffari, S., Yaghmaie, K.: Scale- and rotation-invariant texture description with improved local binary pattern features. Signal Process. 111, 274–293 (2015)CrossRefGoogle Scholar
  5. 5.
    Guo, Z., Li, Q., Zhang, L., You, J., Zhang, D., Liu, W.: Is local dominant orientation necessary for the classification of rotation invariant texture? Neurocomputing 116, 182–191 (2013)CrossRefGoogle Scholar
  6. 6.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hafiane, A., Palaniappan, K., Seetharaman, G.: Joint adaptive median binary patterns for texture classification. Pattern Recogn. (2015)Google Scholar
  8. 8.
    Han, J., Ma, K.K.: Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vision Comput. 25(9), 1474–1481 (2007)CrossRefGoogle Scholar
  9. 9.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hussain, S.U., Napoleon, T., Jurie, F.: Face recognition using local quantized patterns. Br. Mach. Vis. Conf., pp 99.1–99.11 (2012)Google Scholar
  11. 11.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)CrossRefGoogle Scholar
  12. 12.
    Li, C., Li, J., Gao, D., Fu, B.: Rapid-transform based rotation invariant descriptor for texture classification under non-ideal conditions. Pattern Recognit. 47(1), 313–325 (2014)CrossRefGoogle Scholar
  13. 13.
    Li, C., Zhou, W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(4), 1419–1429 (2015)CrossRefGoogle Scholar
  14. 14.
    Li, Z., Liu, G., Yang, Y., You, J.: Scale-and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. IEEE Trans. Image Process. 21(4), 2130–2140 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liao, S., Chung, A.C.: Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude. In: Computer Vision-ACCV 2007, pp. 672–679. Springer (2007)Google Scholar
  16. 16.
    Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Advances in Biometrics, pp. 828–837. Springer (2007)Google Scholar
  17. 17.
    Liu, L., Long, Y., Fieguth, P.W., Lao, S., Zhao, G.: Brint: Binary rotation invariant and noise tolerant texture classification. IEEE Trans. Image Process. 23(7), 3071–3084 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Maani, R., Kalra, S., Yang, Y.H.: Rotation invariant local frequency descriptors for texture classification. IEEE Trans. Image Process. 22(6), 2409–2419 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)CrossRefGoogle Scholar
  20. 20.
    Murala, S., Wu, Q.J.: Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Health Inf. 18(3), 929–938 (2014)CrossRefGoogle Scholar
  21. 21.
    Nguyen, T.N., Miyata, K.: Multi-scale region perpendicular local binary pattern: an effective feature for interest region description. Vis. Comput. 31(4), 391–406 (2015)CrossRefGoogle Scholar
  22. 22.
    Ojala, T., Maenpaa, T., Pietikäinen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proc. International Conference on Pattern Recognition, vol. 1, pp. 701–706. IEEE (2002)Google Scholar
  23. 23.
    Ojala, T., Pietikäinen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Qi, X., Xiao, R., Li, C.G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 11, 2199–2213 (2014)CrossRefGoogle Scholar
  25. 25.
    Qian, X., Hua, X.S., Chen, P., Ke, L.: Plbp: An effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44(10), 2502–2515 (2011)CrossRefGoogle Scholar
  26. 26.
    Ren, J., Jiang, X., Yuan, J.: Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 22(10), 4049–4060 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ren, J., Jiang, X., Yuan, J.: Learning lbp structure by maximizing the conditional mutual information. Pattern Recognit. 48(10), 3180–3190 (2015)CrossRefGoogle Scholar
  28. 28.
    Ren, J., Jiang, X., Yuan, J., Wang, G.: Optimizing lbp structure for visual recognition using binary quadratic programming. Signal Process. Lett. IEEE 21(11), 1346–1350 (2014)CrossRefGoogle Scholar
  29. 29.
    Shrivastava, N., Tyagi, V.: An effective scheme for image texture classification based on binary local structure pattern. Vis. Comput. 30(11), 1223–1232 (2014)CrossRefGoogle Scholar
  30. 30.
    Shu, Y., Wang, T., Shao, G., Liu, F., Feng, Q.: Robust differential circle patterns based on fuzzy membership-pooling: A novel local image descriptor. Neurocomputing 144, 378–390 (2014)CrossRefGoogle Scholar
  31. 31.
    Song, T., Li, H., Meng, F., Wu, Q., Luo, B., Zeng, B., Gabbouj, M.: Noise-robust texture description using local contrast patterns via global measures. Signal Process. Lett. IEEE 21(1), 93–96 (2014)CrossRefGoogle Scholar
  32. 32.
    Sun, J., Fan, G., Yu, L., Wu, X.: Concave-convex local binary features for automatic target recognition in infrared imagery. EURASIP J. Image Video Process. 2014(1), 1–13 (2014)CrossRefGoogle Scholar
  33. 33.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)CrossRefGoogle Scholar
  35. 35.
    Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)CrossRefGoogle Scholar
  36. 36.
    Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing (2015)Google Scholar
  37. 37.
    Wolf, L., Hassner, T., Taigman, Y., et al.: Descriptor based methods in the wild. In: Proc. Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition (2008)Google Scholar
  38. 38.
    Wu, X., Sun, J., Fan, G., Wang, Z.: Improved local ternary patterns for automatic target recognition in infrared imagery. Sensors 15(3), 6399–6418 (2015)CrossRefGoogle Scholar
  39. 39.
    Zhao, Y., Huang, D., Jia, W.: Completed local binary count for rotation invariant texture classification. IEEE Trans. Image Process. 21(10), 4492–4497 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhao, Y., Jia, W., Hu, R.X., Min, H.: Completed robust local binary pattern for texture classification. Neurocomputing 106, 68–76 (2013)CrossRefGoogle Scholar
  41. 41.
    Zhu, C., Bichot, C.E., Chen, L.: Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recognit. 46(7), 1949–1963 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHenan Polytechnic UniversityJiao zuoChina

Personalised recommendations